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Why Design CGRAs?

-  Low power

- Flexibility

- Easy Programmability
- Mature Toolchains



Simulated Annealing-Based Design
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RL-CGRA
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RL-CGRA Agent Design
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RL-CGRA Results
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RL-CGRA Open Questions

- What about applications is causing performance differences?
- Is it possible to do compiler-directed learning with code features in reasonable
times?
What features?

- Can these techniques apply to finer-grained architectures?
- What is best format of compiler feedback?



Conclusions

- Explores RL agents for CGRA design
- Integrate compiler-feedback directly into hardware design toolchains
- Learn from previous experience doing so
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