Designing CGRAs with Deep
Reinforcement Learning

Jackson Woodruff, Chris Cummins
University of Edinburgh, Meta Al

__

| Data Buffer

— + [x

1l

X = + | + P>

(Tan 2021)

(Relatively) Easy Design
CGRA Use Cases ProcesS

leral'y-Based ACCGleratlon ... :{-“(.jr.{c.‘T".f\‘].e“bér.buo.iﬁéid

(e.g. NXP PowerQuad) Bomafe: | o T Overlay sy,,
Specific Domain 0} bours~days Arch m

Overiay ‘ ReCO“ﬂg llll
Generation|New App Compule ew Aop m’
(OverGen) m ~s‘=rond< Binary + Fast Compile

Co-Processor Co-Processor Reconflg if App in Domain
Interface Interface 9

(Liu, Micro 2022)

AHB Slave
AHB Master

Private RAM
Interface Master

AHB Master

Private RAM

AHB Slave Interface Slave

Figure 1. PowerQuad bus interfaces

(NXP PowerQuad Documentation)

Why Design CGRAs?

- Low power

- Flexibility

- Easy Programmability
- Mature Toolchains

Simulated Annealing-Based Design

One Specification

() Simulated a
w2 | (00
1 @ @
ComplTed O®)
—

OO0
lolole}

.
Applications

RL-CGRA

Many Specifications

(Apply Model)
Model ——

...

s @ ;

Applications

Training Loop
(~hours)

Applications

RL-CGRA Agent Design

Observations
Applications
Reward
(Application Performance)

Architecture-Aware
CGRA Compiler —

Pick Best

e wn_ _
(@) o7
o 0 — o~
A 4 B R B
& S = S
- O. 1_ 2
— © —) - - - = S =) o
(47) = = o
=) <) <) o <
>
) ~ — o
@ <) <) &

N e e e e e e e e =

RL-CGRA Results

—— —— ffmpeg LivermoreC bzip
1P —— DarkNet —— freeimage

1.1

10 Performance of Simulated Annealer

0.9 1

Architecture Performance (Normalized)

0.8

0 20000 40000 60000 80000 100000
Time (s)

RL-CGRA Open Questions

- What about applications is causing performance differences?
- Is it possible to do compiler-directed learning with code features in reasonable
times?
What features?

- Can these techniques apply to finer-grained architectures?
- What is best format of compiler feedback?

Conclusions

- Explores RL agents for CGRA design
- Integrate compiler-feedback directly into hardware design toolchains
- Learn from previous experience doing so

References

C. Tan, C. Xie, A. Li, K. J. Barker and A. Tumeo, "OpenCGRA: An Open-Source Unified Framework for Modeling, Testing, and Evaluating CGRAs,"
2020 IEEE 38th International Conference on Computer Design (ICCD), Hartford, CT, USA, 2020, pp. 381-388, doi: 10.1109/ICCD50377.2020.00070

S. Liu et al., "OverGen: Improving FPGA Usability through Domain-specific Overlay Generation," 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRQ), Chicago, IL, USA, 2022, pp. 35-56, doi: 10.1109/MICR0O56248.2022.00018.

