
Towards Generalized On-Chip Communication for
Programmable Accelerators in Heterogeneous Architectures

Joseph Zuckerman1

John-David Wellman2, Ajay Vanamali1, Manish Shankar1, Gabriele Tombesi1,
Karthik Swaminathan2, Kevin Lee1, Mohit Kapur2, Robert Philhower2,
Pradip Bose2, Luca P. Carloni1

Columbia University1, IBM Research2

DOSSA Workshop ’24
6/30/24

Accelerator Specialization

• Programmable accelerators are
optimized for an application
domain, but execute instructions
• Generated by a compiler, another tool,

or hand written

• Balance specialization with
programmability
• Have made them widely popular in

industry and academia

• Mostly studied as monolithic entities

Fixed-Function General-Purpose

NVDLA TPU GPU

The Age of Heterogeneous Computing

• SoCs are growing increasingly heterogeneous
across various computing domains
• CPUs, GPUs, accelerators, I/O peripherals, sensors…
• Possibly multiple instances of complex, programmable

accelerators

• Heterogeneity increases engineering effort
• Capabilities of new generations limited by team size
• Biggest challenges are in system-integration

3

Challenges and Opportunities for SoC Design

• Integration of programmable accelerators in
heterogeneous architectures is not well-studied
• Programmability at the accelerator level could

benefit from flexibility at the system level
• Complex workloads might feature multiple

data-dependency patterns and require
synchronization
• Can we develop platform-level services that

provide these capabilities transparently to the
design of the accelerator?

4

ESP : An Open-Source Platform for SoC Research

• We propose a set of enhancements to an SoC
architecture to support the integration of
programmable accelerators
• Flexible point-to-point accelerator
• Multicast communication supported by the NoC
• Intra-accelerator communication
• A simple accelerator interface to manage

communication modes
• Accelerator ISA extensions for on-chip communication

• Implement these enhancements in ESP, but the
principles can apply to other architectures

5

www.esp.cs.columbia.edu

ESP Background

6

• Multi-Plane NoC

• Many-Accelerator

• RISC-V Cores
• Distributed Memory

The ESP architecture implements a
distributed system, which is scalable,

modular and heterogeneous,
giving processors and accelerators

similar weight in the SoC [3]

ESP Architecture

[3] Mantovani, ICCAD ‘20 7

ESP Accelerator Socket

8

Developers focus on the high-level specification, decoupled from
memory access, system communication, hardware/software interface

A
pp

lic
at

io
n

D
ev

el
op

er
s

H
ar

dw
ar

e
D

es
ig

ne
rs

HLS
Design
Flows

RTL
Design
Flows

Performance

A
re

a
/ P

ow
er

3

2

1 High-Level Synthesis

Code Transformation

Ver. 1

Ver. 2

Ver. 3

RTL
Design Space

Programmer View
Design Space

…
…
accelerator

accelerator

accelerator

ESP Accelerator Flow

9

10

ESP SoC Flow

Proposed Architecture

11

Programmable Accelerator Model

12

• Loosely-coupled from the host core
• Won’t boot an OS, etc.

• Executes coarse-grained tasks on large
workloads
• Needs a DMA interface to bring in large

amounts of data from the SoC

• Highly-customized datapath and
private local memory
• Can rely on a lightweight core for

instruction fetch, decode, commit, etc.
• E.g. RISC-V Rocket Core + RoCC interface
• ISA extensions for leveraging the datapath

Programmable Accelerator

Control Core
(e.g. RISC-V Rocket)

Control Interface
(e.g. RoCC)

L1 Cache

Compute Substrate
(e.g. CGRA)

Private Local Memory

DMA Controller

Memory Interface (e.g. AXI, TileLink, ESP)

Flexible Point-to-Point Accelerator Communication

• Point-to-point (P2P) accelerator
communication improves performance
of applications with data
dependencies
• Avoids round-trip to memory
• Pipelining with fine-grained synchronization

• Implemented with a pull-based model
• Consumer initiates each exchange to satisfy

the consumption assumption

• Previously, data access patterns must
be exactly the same
• Relaxed this by adding a length
• Total amount of data must match 13

wr 1x100

rd 2x50

wr 2x50

rd 1x100

Multicast NoC

• Support multiple-consumer dependencies with a single
NoC message
• With minimal modifications to the ESP NoC
• Header flit modified to carry an array of destinations
• Max # of consumers limited by NoC bitwidth

• Lookahead routing logic replicated for each destination

14

Multicast Header Flit
PREAMBLE SRC DST MSG TYPE DST [] VAL [] RESERVED ROUTING

Unicast Header Flit
PREAMBLE SRC DST MSG TYPE RESERVED ROUTING• Integrated with ESP’s

P2P capabilities

Accelerator Synchronization

15

• Programmable accelerators might
need to synchronize with each other
throughout their execution
• E.g. ensuring they have both arrived to a

pre-defined point in the workload before
exchanging data

• Requires coherence between
accelerators
• ESP supports coherent accelerators, but

coherence must be used for all data
transfers à inefficient

• Enable dynamic switching between
DMA for data transfers and coherence
for synchronization Synchronization Data transfers

Accelerator Interface + ISA Extensions

• Give control of the mode of each
transaction to the accelerator itself
• Just one additional signal on the read and write

control interfaces
• For reads, the user field specifies the

source of the data
• 0 for memory
• 1 to N-1 for other accelerators
• For writes, the user field specifes the # of

consumers of the data
• 0 for memory
• 1 for regular P2P
• 2 to N-1 for a multicast P2P

• ISA Extensions
• Initiate DMA (IDMA) – encodes the index, length,

size, and user as expected by ESP
• Check DMA (CDMA) – query if DMA has finished 16

Results

17

Results: Multicast Router Area

• Synthesized in Cadence
Genus targeting a 12nm
technology
• Varying the bitwidth of

the NoC and the maximum
number of supported
multicast destinations

18

Results: Multicast Performance

• Developed a 5x4 SoC prototype with 17
traffic generator accelerators
• 256-bit NoC allows us to test multicast to

16 consumers
• Deployed on a Xilinx VCU128 FPGA at

78MHz
• Baremetal ”workload” that creates a 1

to N data dependency
• Compared multicast performance to

communication through shared memory
19

Thank you from the ESP team!
sld.cs.columbia.edu esp.cs.columbia.edu sld-columbia/espColumbiaSld c/ESP-platform

Towards Generalized On-Chip Communication for Programmable
Accelerators in Heterogeneous Architectures

Joseph Zuckerman1

John-David Wellman2, Ajay Vanamali1, Manish Shankar1, Gabriele Tombesi1,

Karthik Swaminathan2, Kevin Lee1, Mohit Kapur2, Robert Philhower2,

Pradip Bose2, Luca P. Carloni1

Columbia University1, IBM Research2

DOSSA 2024

https://sld.cs.columbia.edu/
https://www.esp.cs.columbia.edu/
https://github.com/sld-columbia/esp
https://twitter.com/ColumbiaSld
https://www.youtube.com/c/ESP-platform

