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ABSTRACT
We present several enhancements to the open-source ESP plat-
form to support flexible and efficient on-chip communication for
programmable accelerators in heterogeneous SoCs. These enhance-
ments include 1) a flexible point-to-point communication mecha-
nism between accelerators, 2) a multicast NoC that supports data
forwarding to multiple accelerators simultaneously, 3) accelerator
synchronization leveraging the SoC’s coherence protocol, 4) an
accelerator interface that offers fine-grained control over the com-
munication mode used, and 5) an example ISA extension to support
our enhancements. Our solution adds negligible area to the SoC
architecture and requires minimal changes to the accelerators them-
selves. We have validated most of these features in complex FPGA
prototypes and plan to include them in the open-source release of
ESP in the coming months.

1 INTRODUCTION
Programmable accelerators [1–3] have become a prominent element
of system-on-chip (SoC) architectures thanks to their ability to bal-
ance energy-efficient and high-performance computation with flex-
ibility for application developers. In contrast to their fixed-function
counterparts, programmable accelerators execute instructions gen-
erated by a compiler, a specialized tool, or written by hand. In some
cases, they can be programmed using a domain-specific language [4],
a specialized language for a particular class of applications.

A heterogeneous SoC architecture [5–9] might feature several
instances of programmable accelerators alongside general-purpose
cores, fixed-function accelerators, and various peripherals. In vari-
ous domains, workloads can be partitioned across several accelera-
tors to exploit parallelism. There may also be data dependencies
across kernels running on different accelerators; this can require
synchronization among accelerators for correctness and direct for-
warding of data for efficiency. Software developers writing appli-
cations for these complex systems would therefore benefit from a
flexible on-chip communication substrate that supports multiple
types of data transfer modes and seamless synchronization.

Figure 1 shows 3 different data-access patterns that might be
required by an accelerator in a heterogeneous SoC. In this case, the
figure shows a 3x3 tile SoC, with 6 accelerators, 1 CPU, 1 memory
tile, and 1 tile for IO peripherals. Typically, a network-on-chip (NoC),
serves as the interconnect in such a tiled system. The data access
modes shown include: 1) direct memory access (DMA), which could
be to a scratchpad, a last-level cache partition, or off-chip DRAM; 2)
direct point-to-point (P2P) communication between 2 accelerators,
in which outputs of one accelerator are directly forwarded as inputs
to another; and 3) multicast transfer, in which outputs of one accel-
erator are directly forwarded to multiple others. Moreover, these
different types of communication modes might be required within
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Figure 1: Three distinct data access modes for an accelerator
in a 3x3 tile heterogeneous SoC.

a single accelerator invocation, which is the typical granularity of
synchronization with a host. So, software-based solutions would
require costly synchronization overheads.

Instead, we propose hardware-based solutions, tightly integrated
into the system-level architecture of a heterogeneous SoC, to
support the desired communication and synchronization primitives.
Our implementation requires minimal area overhead on top of an
existing SoC architecture and only minor changes to the design of
accelerators themselves. We build our solution on top of ESP [10],
an open-source platform for SoC design, but the main principles
can apply to other SoC architectures. Our solution builds on the
following contributions:
• Enhancements to ESP’s existing P2P capabilities for flexibility.
• A lightweight and efficient multicast NoC, that integrates with
ESP’S P2P capabilities.
• A proposal for inter-accelerator synchronization based on
coherence provided by the SoC architecture.
• An accelerator interface that supports fine-grained control over
communication modes and integrates well with existing standards.
• Example ISA extensions for programmable accelerators to
leverage our architecture.

2 THE ESP ACCELERATOR SOCKET
The ESP architecture is a heterogeneous tile grid, connected by a
2D mesh NoC. Figure 2 shows one of the key types of tiles, the
accelerator tile, with an instance of an example programmable ac-
celerator. Programmable accelerators need to feature dedicated
structures for instruction dispatch, scheduling, and retirement [11].
To avoid defining an ISA and developing control structures from
scratch, open-source ISAs like RISC-V and accompanying core im-
plementations, such as the Rocket Core [12], can be attractive for
those developing programmable accelerators [13]. In the case of the
Rocket Core, ISA extensions can be used to communicate with a
custom datapath through its RoCC interface. This datapath and cus-
tom private local memory (PLM) are the key to providing speedup
for the target applications.

In ESP, accelerators are loosely coupled [14], which means they
are decoupled from the implementation of host cores, are connected
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Figure 2: The ESP accelerator socket with an instance of a
programmable accelerator.

through the system interconnect, and execute coarse-grained tasks
on large workloads. Therefore, programmable accelerators in such
architectures also need a memory interface to load large quantities
of data from the rest of the system.

The dark green part of Figure 2 shows the ESP accelerator
socket [15]. The socket decouples the design of the accelerator
and provides various platform services, such as DMA, address trans-
lation, interrupts, and configuration registers that greatly simplify
the integration of the accelerator into the SoC. In ESP, accelerators
are allocated a single contiguous, virtual buffer, which is poten-
tially scattered across multiple large, physical pages. The TLB in the
socket translates the accelerator virtual address to a global physical
address. The data can then be accessed with one or more coherence
modes [16]. In DMA-based modes, requests and responses use the 2
DMA NoC planes to send requests either to the last-level cache or
directly to off-chip memory. If the accelerator socket instantiates
an optional L2 cache, the fully-coherent mode can be used to have
the accelerator participate in the system’s coherence protocol, in
this case MESI, through the 3 coherence NoC planes.

ESP’s P2P communication [17] reuses the DMA NoC planes to
forward data directly from one accelerator to another. P2P com-
munication adopts a pull-based mechanism in order to satisfy the
consumption assumption, in which messages put on the NoC are
always consumed [18], thereby preventing deadlock. The consumer
accelerator initiates the transaction by sending a P2P request to the
producer. If configured in the P2P mode, the producer waits for the
request from the consumer before forwarding the data.

3 ENHANCEMENTS TO ESP
In this section, we detail the various enhancements made to the
ESP architecture to support our proposal.

Flexible P2P Communication. The current implementation of
ESP’s P2P communication comes with a few restrictions. First, the
selected communicationmode for the accelerator must be applied to
all transactions for the entire invocation (i.e. all memory or all P2P).
In many cases, however, it would be convenient to access some data
frommemory and some data from another accelerator (e.g. a neural-
network accelerator fetching model parameters from memory and
a previous layer’s outputs from another accelerator). We modified
the accelerator socket to be able to change its communication mode

Figure 3: Signals of the 4 latency-insensitive channels of the
ESP accelerator interface.

at the granularity of each data transfer (i.e. burst); this is described
further in the Accelerator Interface section.

Second, the existing implementation of P2P requires that both
the producer and consumer accelerator have the same data access
pattern (i.e. number and size of bursts). This limits the applicability
of P2P, particularly between accelerators of different types. By
adding a length to each P2P request made by the consumer, this
constraint is now relaxed, and the two accelerators can leverage
P2P with different access patterns, only subject to the constraint
that they must produce/consume the same total amount of data for
a P2P transaction.

Multicast NoC. The NoC forms the backbone of the ESP archi-
tecture and has several key properties that are important for the
functionality and performance of ESP. For example, because we
leveragemultiple physical planes instead of virtual channels and em-
ploy lookahead routing, there is a single cycle latency from router to
router; moreover, the use of dimension-ordered routing guarantees
the absence of routing deadlock. In designing our multicast NoC,
we sought to minimize the changes to the ESP NoC. Starting from
the design of the existing ESP NoC router, we modified the meta-
data of each NoC message to include a list of destinations instead of
a single one. This metadata is contained in a NoC message’s header
flit, the first unit of data exchanged between 2 routers; the number
of supported destinations is therefore dependent on the bitwidth
of the NoC. The lookahead routing logic, which computes the next
routing instruction for a destination, is replicated to compute the
direction for each destination in parallel. We modified the router
to be able to forward a packet to multiple output ports in parallel
when necessary, e.g. the bottom middle ACC tile in Figure 1c.

We integrated the new multicast NoC with ESP’s P2P capabili-
ties to facilitate multicast transfers between accelerators. When a
multicast transfer is specified, the producer uses the P2P exchange
mode, but instead of waiting for a single consumer request, it waits
for the number of consumers specified. Once all requests have been
received, the producer creates the appropriate multicast message
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with the coordinates of all destinations encoded and then sends the
data to all of them in a single transfer.

Accelerator Synchronization. Rather than designing a be-
spoke synchronization solution for a particular type of accelerator,
we propose a more general-purpose synchronization scheme lever-
aging the ESP coherence protocol. As previously mentioned, ESP
can optionally instantiate an L2 cache in the accelerator tile, which
enables the accelerator’s participation in the MESI coherence pro-
tocol. However, the fully-coherent mode can be much less efficient
than DMA modes for many workloads [19]. Furthermore, similar
to the current restrictions on switching between P2P and memory
access, the same coherence mode must be applied for all data trans-
fers within a single accelerator invocation. Therefore, we plan to
reserve some portion of the accelerator’s dataset for synchroniza-
tion messages, which leverage fully-coherent transfers, while all
other bulk transfers can leverage the DMA controller; some modest
changes to the socket are required to support this.

Accelerator Interface. Figure 3 shows waveforms characteriz-
ing the updated ESP accelerator interface. Black and blue represent
the existing signals coming from the accelerator and socket, re-
spectively; new signals coming from the accelerator are in red. The
interface consists of 4 independent latency-insensitive [20] channels:
read control, read data, write control, and write data.

Each control channel contains signals to specify the length, word
size, and address (relative to the accelerator’s virtual buffer). The
data channels merely carry the read and write data. We added
a user field to each control channel to support our changes for
flexible transfers and multicast. On the read channel, the user field
encodes the source of each transaction. Zero encodes a standard
DMA request, while 1 to (𝑁 − 1) encode a P2P request to one of
the other accelerators in the SoC. A small, configurable lookup
table in the socket encodes the tile coordinates for each index, so
that these values can be virtualized. On the write channel, the user
field encodes the number of destinations for the write: zero again
encodes a DMA request, 1 encodes a unicast P2P transfer, and 2 to
(𝑁 − 1) encode a multicast transfer.

Although this proposed interface builds on the ESP accelera-
tor interface, it could be applied to other standards, in particular
AXI [21], which also has independent, latency-insensitive channels
that serve similar purposes.

Example ISA. We propose a simple, 2-instruction extension to
the accelerator’s ISA to govern DMA transactions: Initiate DMA
request (IDMA) and Check DMA (CDMA). The IDMA instruction
specifies the necessary information for the read/write control in-
terfaces, including the length, word size, and source/number of
destinations. It also specifies the virtual address (which is mapped
to the global address space) to read from/write to and the local phys-
ical address to store the read data to/fetch the write data from in the
accelerator’s PLM. The IDMA instruction also returns a tag, which
uniquely identifies the DMA transaction locally to the accelera-
tor. Because the DMA transactions are performed asynchronously
with respect to the accelerator’s pipeline, the CDMA instruction
can then use the tag issued from IDMA to query the status of a
particular DMA operation. The CDMA instruction returns status
information, which can be used by the accelerator for subsequent
control flow, e.g. the accelerator can initiate a DMA to load data,
do some computation, and then query whether the DMA load is

Figure 4: Area of a single NoC router with different bitwidths
and maximummulticast destinations.

complete, at which point the accelerator can proceed to compute
with that data.

4 RESULTS
While these enhancements to ESP greatly improve the flexibility
of on-chip communication, particularly for programmable accel-
erators, the main quantitative results of our work come from the
implementation and integration of the multicast NoC in ESP. In
particular, in this section we detail the area overhead of adding
multicast support to the NoC router and the speedups provided
by leveraging multicast on a many-accelerator SoC prototyped on
FPGA.

We first synthesized various configurations of the NoC router by
sweeping both its bitwidth and the maximum number of supported
multicast destinations. Because the header flit is used to encode the
coordinates of each multicast destinations, the number of possible
destinations is limited by the bitwidth of the NoC. For example,
a 64-bit NoC can encode up to 5 destinations, and a 128-bit NoC
can encode up to 14 destinations. In the current implementation,
ESP supports multicasts of up to 16 destinations, but this could be
expanded in the future.

We synthesized the NoC with Cadence Genus targeting a 12𝑛𝑚
technology. Figure 4 shows the post-synthesis area of each router
configuration. The baseline router (64 bits, no multicast) has an area
of 3620𝜇𝑚2. Increasing the bitwidth of the NoC shows a roughly
proportional increase in the area of the router; this is expected, as
much of the router area is occupied by the input queues. The 128-bit
NoC and 256-bit NoC without multicast have areas of 6,230𝜇𝑚2 and
11,520𝜇𝑚2, respectively. Supporting additional multicast destina-
tions comes at a cost of 200𝜇𝑚2, on average, which is 5.5%, 3.2%, and
1.7% of the 64-bit, 128-bit, and 256-bit baseline routers, respectively.
The 64-bit, 128-bit, and 256-bit NoC routers can support 4, 8, and
16 destinations, respectively, with less than a 30% increase of area.
In summary, adding multicast incurs modest area overheads.

Next, we evaluated the performance benefits of leveraging mul-
ticast by running a toy application on an FPGA prototype of many-
accelerator SoC. Figure 5 shows the layout of the target SoC. It is a
12-tile SoC arranged in a 3x4 2D mesh with 1 CPU tile featuring
the RISC-V CVA6 core [22, 23], 1 Memory tile, 1 I/O tile, and 17
traffic generator accelerators. The traffic generator is used to mimic
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Figure 5: Evaluated 3x4 SoC with 1 CPU tile, 1 Memory tile,
1 IO tile, and 17 traffic generator accelerators.

the communication patterns of an accelerator in the SoC, but does
not perform any computation. In particular, our traffic generator
accelerator performs the identity function, i.e. it writes the same
data as output that it receives as input. We leverage a 256-bit NoC
for communication between accelerators, which allows us to test
multicast up to the maximum of 16 destinations. Our SoC is im-
plemented for a Xilinx Virtex Ultrascale+ VCU128 board and the
design runs at 78 MHz.

Our application mimics a dataflow of 1 producer accelerator that
creates data that is used by 𝑁 consumer accelerators. We compare
using multicast to a baseline of communication through shared
memory (i.e. the producer writes to main memory and then the
𝑁 consumers read the same data). We vary both the number of
consumer accelerators and the amount of data exchanged between
accelerators. The traffic generator accelerator is capable of loading
4KB of data at a time; hence, larger data set sizes require multiple
read and write bursts.

Figure 6 shows the speedup of multicast compared to the shared-
memory baseline for each configuration of number of consumers
and data size. Even with only 1 consumer (i.e. no multicast) and the
smallest data set, we see a 72% speedup compared to the baseline.
Using P2P communication avoids a round trip to main memory
and allows for finer-grained synchronization and pipelining across
accelerators. As expected, adding additional consumers improves
the speedup; with the same dataset size, a multicast to 16 consumers
gives a speedup of 120%. For 𝑁 consumers, we do not see a speedup
of a factor of𝑁 , because we are not turning a purely serial operation
(although there is amemory bottleneck in the baseline, there is some
overlap in the execution of the accelerators) into a purely parallel
one (the multicast has synchronization overheads that require some
degree of serialization). As the dataset sizes increases, the speedup
improves because the multicast P2P communication allows for the
pipelining of the execution of the producer and consumers at the
granularity of bursts, thereby hiding memory access latency and
invocation overheads. This phenomenon plateaus at 1MB, when
these overheads become negligible compared to the total size of the
task. A maximum speedup of 203% is achieved with 16 consumers
and a 1MB workload.

Figure 6: Speedup of multicast compared to shared-memory
baseline with varying consumers and data size.

5 CONCLUSION AND FUTUREWORK
We presented a proposal for a system-level architecture that
supports flexible and efficient on-chip communication for pro-
grammable accelerators in heterogeneous SoC architectures. We
have completed the design of the flexible P2P, multicast NoC, and
updated accelerator interface. The accelerator synchronization is
under development. Because of the substantial time required to
design a programmable accelerator, the completed features have
been validated on complex FPGA prototypes using traffic-generator
accelerators and show significant performance improvements with
modest overheads. We leave evaluation with real programmable
accelerators, which we are actively developing, for a future paper.
The completed features are already available publicly in develop-
ment branches of ESP’s GitHub. All of these features will eventually
become part of the main public release [24].
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