NoC-level Threat Monitoring in Domain-Specific
Heterogeneous SoCs with SoCurity

Naorin Hossain
IBM Research
naorin.hossain @ibm.com

Abstract—Heterogeneous systems-on-a-chip (SoCs) are in-
creasingly used to meet low-power, high-performance compu-
tational requirements but are vulnerable to on-chip resource
availability attacks. In this work, we explore design opportunities
with fw, a widely applicable SoC design enhancement that
provides protection against resource availability attacks through
anomalous activity detection. We demonstrate the effectiveness of
using SoCurity for anomaly detection with a case study on real
SoC implementations for a connected autonomous vehicle system
and find up to 96.4% detection accuracy. We then discuss how
this work can be used to protect against other threats and to
enhance system reliability through detection of hardware faults.
We propose that a solution like SoCurity can help ease and enable
focused threat and fault mitigation built into our systems.

I. INTRODUCTION AND MOTIVATION

Systems-on-a-chip (SoCs) consolidate various processing
components on a single die to offer high-performance process-
ing ability, while maintaining low area and power overheads.
They are increasingly being adopted to power digital systems,
including personal computers, servers, and embedded devices,
such as smartphones, autonomous vehicles, medical devices,
data centers, cyber-physical systems, and the internet-of-
things [3, 36]. Heterogeneous SoCs are designed to the target
device’s computational needs by bringing together specialized
processing units tailored to accelerate the device’s tasks, all
on a single die. SoC components can include general purpose
processing cores, hardware accelerators, memory interfaces,
and I/O interfaces. Some of the SoC components may also
be black-box third-party intellectual property (IP) units. State-
of-the-art SoCs use network-on-chip (NoC) interconnects for
efficient communications between these SoC components [1,
9].

Although heterogeneous SoCs make notable improvements
in power and performance, they also introduce more severe
security and reliability challenges than prior system designs.
The diverse set of components in heterogeneous systems
invites an increased possibility of vulnerabilities or hardware
faults to occur in a variety of ways throughout the system.
Such problems could potentially lead to fundamental system
failures that must not occur in many safety-critical edge
devices. Furthermore, integration of components from third-
party vendors presents the added risk of unknown vulnerabil-
ities introduced by internal component designs. It is thus a
substantially greater challenge for systems designers to ensure
security and reliability throughout a heterogeneous SoC.

Alper Buyuktosunoglu, John-David Wellman, Pradip Bose
IBM Research
{alperb, wellman, pbose}@us.ibm.com

Margaret Martonosi
Princeton University
mrm@princeton.edu

Protecting embedded devices from security and reliability
issues comes with added challenges that must be addressed
by realistic solutions. Like the low-power needs met by the
domain-specific SoCs that operate these devices, preventative
measures must feasibly run under low-power and area con-
straints without requiring high performance processing that
can exceed the device’s capabilities. Additionally, embedded
devices are often designed for long field lives, such as au-
tonomous vehicles which may be used for over a decade. This
requires defenses to be adaptable over time against evolving
threats. Finally, a general solution is needed that is applicable
to the custom and fast-changing SoC designs that are used
across various devices.

Although prior works used hardware performance counters
for malware and hardware fault detection in traditional CPU
architectures [5, 12, 16, 20-22, 29, 30], they are insufficient
for SoCs as they may not be able to monitor the different
processing units, memory, and I/O interfaces on SoCs that
may be at risk. Further, black-box SoC components may not
expose desired hardware performance counters to be used in
such approaches. With rapidly changing SoC designs, it is
critical for these needs to be met.

In this work, we explore design opportunities with SoCu-
rity [17], a widely applicable SoC design enhancement
that provides protection against resource availability attacks
through anomalous activity detection. We first discuss SoCu-
rity and our experiments that show it can be effective for
availability attacks like denial-of-service (DoS) on domain-
specific architectures. We then discuss how SoCurity can be
used to protect against other threats and to enhance system
reliability through detection of hardware faults. We propose
that a solution like SoCurity can help ease and enable focused
threat and fault mitigation built into our systems.

II. THE SOCURITY APPROACH FOR SOC MONITORING

Our presented ideas center around methodology developed
in the SoCurity work, which developed a design method
for enhancing security in heterogeneous SoCs at the NoC
interconnect level. SoCurity presents the first use of NoC-
based hardware counters to monitor ongoing SoC activity.
NoC-level monitoring ensures there is no reliance on the
internal design of individual SoC components. NoC-based
counters can thus provide a foundation for hardware-level

SoC with SoCurity:
/ﬁ Accl| |Acc2| |Acc3
SoCurity
NoC-based Counters Mem
N in each router
Live workloads General counters
- User runs tasks Packet injections 346 "

) on plane 1 SoCurity-based
on device Packet injections |~ read v detecti
S Device system runon on plane 2 Leac anomaly fe ec. ion

: ‘ o Y| and localization
runs tasks in the P Packets ininput | time
ueue on plane 1 L
background e 7| [intervall | Trained anomaly
- Injected malware Hloe iy detection model
runs attacks Mem counters
Coherence regs 31 Ano ma Iy
Coherence resps | 29 detected §
DMA regs 26 N N
FYTy— Locallz.atlon
engine

Figure 1: SoCurity introduces counters to NoC routers for each
tile in an SoC to monitor ongoing interactions between tiles
(example counters shown). These counters enable a constantly
active anomaly detection and mitigation system while live
workloads run on the SoC.

security and reliability measures to be incorporated into a
broad scope of SoC designs.

Built on top of SoCurity’s NoC-based SoC monitoring,
we developed a fast, lightweight anomalous activity detection
system, called the SoCurity analyzer, that can capture hard-
ware availability attacks and identify where anomalous activity
is occurring in the SoC. Here, lightweight indicates low
algorithmic complexity with compact processing and memory
requirements resulting in swift execution, even on small-scale
embedded systems. To account for the growing attack space as
SoC designs rapidly change and become more heterogeneous,
no prior knowledge or characterization of attacks is required
with our approach, enabling detection of existing attacks and
novel future availability attacks. To this end, we used semi-
supervised machine learning (ML) models that train only on
benign SoC behavior captured by the NoC counter data. After
training, the model is deployed on the SoC to identify and
flag any runtime-collected counter data that deviates from
training data as anomalous activity, such as excessive NoC
traffic from a DoS attack on an SoC component. Furthermore,
the anomalous NoC counter data provides useful insight on
where in the SoC the anomalous behavior is occurring.

In this section, we briefly discuss the proposed NoC coun-
ters, ML models, and end-to-end SoCurity detection system,
as summarized in Figure 1.

A. NoC-Based SoC Hardware Counters

In a heterogeneous SoC, the presence of black-box third-
party IP and various on-chip processing units requires that any
holistic approach to observing hardware activity throughout
the SoC either a) requires a specific interface be implemented
by each component to monitor and expose its internal activity,
or b) brings monitoring outside these components to the NoC-
level where usage of and communications between compo-
nents can be tracked. SoCurity takes the latter approach, as

the NoC interconnect granularity provides a reliable medium
for monitoring activity throughout an SoC and does not
impose additional requirements on SoC component designs.
This approach is ideal for open-source hardware designs, such
as those supported by the ESP project [26], which provides
a plug-and-play platform integrating accelerators into SoCs
within a 2D mesh NoC. SoCurity is a natural fit for open-
source SoC design platforms like ESP.

NoC-based counters can capture a holistic view of ongoing
SoC activity by monitoring: 1) NoC packets injected by each
tile, 2) NoC congestion at each tile, 3) memory tile requests
and responses, and 4) accelerator usage. Counters can be
implemented as protected registers at the router for each tile
(examples in Figure 1). NoC packet counters can increment
at each source and destination router for each packet. NoC
congestion counters can track the size of packet input queues
at each router. For memory interface tiles, some counters can
track coherence and direct memory access (DMA) requests
by incrementing (on arrival) for packets from cores and
accelerators, respectively. Routers for accelerators can count
usage cycles by recording cycles between a packet arrival from
a core and a departure of a response packet to that core. These
proposed counters are generic and applicable for tiles in any
SoC design.

B. Semi-Supervised Anomaly Detection Models for SoCurity

The goal for the SoCurity detection system is to use a
lightweight algorithm to quickly flag uncharacteristic hard-
ware behavior without searching behaviors specific to known
attacks. When developing SoCurity, we considered four semi-
supervised anomaly detection models. They are each based
on common supervised models, but designed for one-class
classification, training only on a set of benign data. These
models are well-studied anomaly detection algorithms and
their simplicity, speed, accuracy, and general applicability best
fit our goals. Collected training data is used to define bounded
regions of possible benign activity. Samples that fall outside of
these regions get labeled anomalous. With no anomalous train-
ing data, these models are capable of capturing both existing
and novel future attacks, a particularly attractive quality that
inspired their use in our system. In our experiments (§III),
we used available implementations of the models from the
Python scikit-learn library [32], except for one-class nearest
neighbors (OCNN) which is not in the library. We wrote our
own OCNN implementation based on the k-Nearest Neighbors
(kNN) module in the scikit-learn library.

1) One-Class Nearest Neighbors: Nearest neighbors algo-
rithms like kNN use distance between samples for predic-
tion [14]. Training data is simply stored as feature vectors,
and distances from test data to each training data point
are calculated, with a majority vote among the k nearest
neighbor labels used to classify a test sample. In the “one-
class” anomaly detection variant, OCNN, a distance boundary
determines whether a sample is close enough to training data
to label it benign. Of the OCNN variants described in [19],
we used 11NN.

2) One-Class Support Vector Machines: Support vector
machines (SVM) distinguish classes by projecting data to
a higher dimension where samples can be separated by a
hyperplane [10]. The nearest training points to the hyperplane
are the support vectors, and the optimal hyperplane maximizes
distance to them. In one-class SVM (OCSVM), samples
are lifted to a higher dimension but the optimal hyperplane
maximizes distance between support vectors in the benign
training set and the origin [34]. The model learns a frontier
where training samples are densely populated and anomalies
fall outside of the region when raised to the higher dimensional
space. We used OCSVM with the non-linear radial basis
function (RBF) kernel.

3) Isolation Forest: Isolation forest (iForest) is a one-
class, anomaly detection variant of the supervised random
forest model [24]. Random forest is an ensemble model com-
posed of several decision trees that break up a classification
problem [6]. iForest is similarly composed of isolation trees
(iTrees) that split on random features in the training set until
all data resides at a leaf node. The basis of anomaly detection
with iForest is the notion that anomalies are distinct enough
from regular data that they can be quickly and easily sifted
out. Anomalies thus have a shorter path down an iTree than
a regular sample. A sample receives a score for the length of
its traversal path for each iTree and averaged scores are used
to flag anomalous samples.

4) Local Outlier Factor: Local outlier factor (LOF) is a
distance-based algorithm similar to kNN but also accounts
for local density of samples [7]. The key idea is that regular
samples are densely packed in a space and anomalies would
thus be farther away from these regions, in sparser areas of the
space. LOF scores indicate a sample is benign when it falls
within a dense cluster of its neighbors.

C. End-to-end Anomaly Detection System

Model Training: Effective anomaly detection with a semi-
supervised approach relies on strong training data that ac-
curately portrays regular system behavior. Collecting repre-
sentative data sets is feasible since SoCs are designed for
specific uses. The detection model is statically trained with
counter data collected during representative workloads in a
secure, offline setting. Once deployed, the trained model can
be updated periodically with data that is collected during the
device’s use and found to be benign. These future updates
ensure the model remains robust to regular usage.

Secure Implementation: When deployed on an SoC, the
base configuration for the proposed anomalous activity detec-
tion system is to execute it on an isolated core at the highest
privilege level, independent of the software stack, protecting it
against attackers (Fig. 1). Alternatively, the detection system
can be implemented and executed as a standalone hardware
unit, enhancing its security from intruders. For either approach,
the NoC counters should only be accessible to the detection
system through a dedicated NoC plane that is unavailable to
other SoC components. Memory for the detection model and
counter data should also be isolated in a trusted, secure space

that only the detection system can access and do so without
interrupting ongoing program executions.

Full defense process for malware-injected attack detec-

tion:

1) NoC counter data is collected while running representa-
tive workloads on the SoC in a secure, offline setting.

2) The anomaly detection model is trained with the col-
lected data.

3) The trained model is deployed on the SoC for runtime
detection.

4) NoC counter data is periodically read and input to the
model.

5) The detection model predicts if the counter data is
anomalous.

6) If the data is anomalous, it is provided to the localization
engine.

7) The localization engine pinpoints the anomalous activ-
ity in the SoC. Location information is then used to
find the associated anomalous process for mitigation.
Alternatively, it may be determined that the data was
mispredicted.

8) Counter data labeled benign by the detection or localiza-
tion engine is used to update the detection model over
time.

III. SOCURITY FOR CONNECTED AUTONOMOUS
VEHICLES

To demonstrate SoCurity monitoring and detection, we
performed a case study on real SoC implementations of
connected autonomous vehicle (CAV) systems. CAVs are
being designed to improve reliability of navigational decisions
through “swarm” communications with nearby vehicles, smart
infrastructure, and the cloud for sharing knowledge on sur-
roundings [38]. CAV SoCs are complex and subjected to high
input variability based on real-world conditions.

A. Threat Model

SoCurity was designed to provide a hardware-level security
solution for maintaining the performance gains made possible
by heterogeneity in SoCs [17]. In particular, it was designed
to protect the SoC against attacks that disturb the regular
operation and accessibility of components on the SoC. Possible
avenues to introduce such an attack on an SoC include
hardware trojans incorporated at design time into third-party
IP tiles and malware injected at runtime through connected
devices or the cloud. Though the techniques presented in the
SoCurity work are able to detect anomalous hardware activity
resulting from attacks loaded on the SoC through any of
these means, our study focuses on malware injections. We
assume the malicious attacker is aware of accelerators on the
SoC and is able to send tasks to them. In this study, we
particularly focus on detection of DoS attacks that flood and
congest the NoC with tasks for victim SoC components. We
select DoS attacks as they are the most common hardware
availability attack and are a concerning vulnerability for SoCs
with NoCs [9, 23].

SoC Configuration B

e Saietyana |~ || SoC Configuration A |

o securiy ||
sssssssssss GPU el _)| —————= I______'I
I CPU || [Memory| | | CPU |
|

CPUs
|

iterbi iterbil | Viterbi |

Neural Network Accelerators

[NoC counters at routers

Figure 2: Overview of the implemented SoC subsystem lay-
outs for each configuration. The SoCs are shown within a
larger CAV compute model (based on Tesla Full Self-Driving
chip [1]). They consist of RISC-V Ariane cores, memory tiles,
1/0 tiles, FFT accelerators, and Viterbi decoder accelerators.
SoC A has a single RISC-V CPU, while SoC B has two.

B. Experimental Setup

We implemented two SoC prototype configurations for the
swarm communication component of a full CAV SoC for
this case study (Fig. 2). Both SoCs were emulated on a
Xilinx Virtex UltraScale+ VCU118 FPGA running at 78MHz
using the ESP platform [26]. Each SoC has a 3-by-3 tiled
layout. SoC A has one 64-bit RISC-V Ariane core [15, 40], a
memory tile, an I/O tile, three FFT accelerators, and three
Viterbi decoder accelerators. In contrast, SoC B includes
one additional RISC-V core that replaces one of the FFT
accelerators. The RISC-V core has a 16KB L1 I-cache and
a 32KB L1 D-cache. In SoC B, the CPU tiles also have a
32KB private L2 cache. The memory tile has a 256KB LLC.
Tiles are connected by a 2D mesh NoC with six planes for
specific data packets [26]. Fig. 2 shows a high-level sketch of
the implemented SoCs and how they might fit into a larger
CAV SoC.

For each SoC, we implemented hundreds of NoC-based
counters using the lightweight hardware monitoring system
from the Cohmeleon work for ESP [42]. The counters spanned
the following:

o General: NoC packets, backpressure cycles by tile/plane
o Memory: off-chip memory accesses, coherence request-
s/responses, DMA requests/responses, LLC hits/misses

« Accelerator: total/memory/TLB cycles, invocations'

1) CAV Workload: For our experiments, we ran a repre-
sentative workload on the SoC implementation that addresses
characteristics of a real-world CAV application, with a focus
on swarm communication. A generated trace of upcoming
obstacle positions drives the workload. The workload loops
on the following tasks during each time step:

1) Calculate distance to surrounding objects using radar
readings (via the FFT accelerators).

2) Messages are received from other vehicles, infrastruc-
ture, or the cloud (i.e., swarm communications). We
assume a Viterbi encoding scheme for messages and use
Viterbi decoding accelerators to process them [39].

IThe accelerator invocation counter was added to SoC B only. We found
that it strongly correlates with the other accelerator counters.

Attack Attack Time (s) | Total Time (s) | Impact
No attack - 46.56 -
FFT 11.55 55.59 5.75
Viterbi 94.13 146.46 4.89
FFT + Viterbi 104.13 155.74 5.00
Memory 40.89 61.71 2.00

Table I: Average DoS attack durations, average total durations
of CAV workload during attacks, and impact of each attack
(higher values indicate higher impact). Absolute times reflect
300 time steps of the workload running on a 78MHz FPGA
for SoC A. Runtimes for SoC B follow similarly.

3) Combine learned knowledge to plan and execute actions.
This step is driven by information from steps 1 and 2.

2) DoS Attack Targets: We ran four DoS attack variants on
the SoCs by flooding the NoC with packets for victim tiles.
The attacks slowed down CAV workload computations by
keeping targeted SoC components busy, negating performance
gains achieved by the heterogeneous design. The attacks are:

1) FFT: 1000 FFT tasks are inserted into the network,
causing traffic on all FFT accelerators and slowing down
distance calculations.

2) Viterbi: 1000 randomly sized Viterbi decoding tasks
are sent for all Viterbi units, slowing down incoming
message decoding.

3) FFT + Viterbi: 1000 tasks are sent to both FFT and
Viterbi tiles.

4) Memory: 500,000 memory requests are made for ran-
dom addresses in a space that is twice the size of
the LLC. Frequent cache misses slow down legitimate
memory requests.

3) Evaluation Methods: To develop an anomaly detection
system using data from the SoCurity counters, we imple-
mented the four semi-supervised ML models described in
§II-B. They were trained offline using NoC counter data
collected while the regular CAV workload ran on the SoCs.
They were then tested with counter data collected while the
DoS attacks ran alongside the CAV workload on the SoCs.

C. Results

Each DoS attack impacted the CAV workload running on
the SoCs. For SoC A, Table I gives each attack duration, the
time to run the CAV workload for 300 time steps during each
attack, and an impact metric for each attack’s overall effect
on the workload. SoC B runtimes follow similarly. As each
attack varies in length, overall workload slowdown does not
provide a good comparison for the impact each attack had
on the CAV workload. Instead, we include an impact metric
for fair comparison. Impact is quantified as the ratio of the
workload’s slowdown (%) to the proportion of the run
during which the attack is executed (%7:‘:;“). In this section,
we present results from our anomaly detection experiments
using these attacks on SoCs A and B.

1) Comparing Models for DoS Attack Detection: To eval-
uate anomaly detection performance of each semi-supervised
model on SoC A, we counted true positive (TP), false positive

DoS Attack Detection on SoC A
FFT attack Viterbi attack

oo _ ‘_
ocsm _ _
’ _ {_

o _

0 500 1000 1500 2000 2500 3000 3500 O 1000 2000 3000 4000 5000

FFT + Viterbi attack Memory attack

oo _ {_
e — { _

5000 0 500 1000 1500 2000 2500 3000 3500
samples

iF

o —

0 1000 2000 3000 4000
Samples

FN mmm TP e FP mmm TN

Figure 3: FN, TP, FP, TN for each model and attack. Low FN
and FP are better. All models performed well on FFT attacks.
OCSVM performed best for Viterbi and FFT + Viterbi attacks.
All models had high FPs for memory attacks.

(FP), true negative (TN), and false negative (FN) predictions
for the test data sets, where the positive class is anomalies
and predictions were compared against automated ground truth
labels (automated using clustering models like k-means [25]).
When tuning model parameters, we prioritized low FNs
(<10% on SoC A) to minimize missed anomalies and low
FPs to avoid system resource costs.

Fig. 3 presents FNs, TPs, FPs, and TNs for each model and
DoS attack on SoC A. We found attacks with higher impact
on the CAV workload (Table I) were more easily detected. All
models detected FFT attacks best; there were no FNs. OCSVM
had the lowest FNs and FPs for Viterbi and FFT + Viterbi
attacks. All models had high FPs for memory attacks which
had the least impact and thus less accurate clustered ground
truth labels than other attacks. In online tests (§III-C3), far
fewer FPs occurred for memory attacks. Overall, all models
were highly effective, but OCSVM best distinguished variable
message traffic decoding from Viterbi-based attacks in SoC A.

Semi-Supervised vs. Supervised Models: To underscore
the detection models’ enhanced ability to detect unknown
attacks compared to supervised models, we compared the
semi-supervised models with their supervised variants, using
similar parameters for training. We examined KNN, SVM,
and random forests models, training them with anomalous data
from FFT attacks, and compared their abilities to detect Viterbi
attacks against the semi-supervised models.

Fig. 4 presents receiver operating characteristic (ROC)
curves for SoC A comparing Viterbi attack detection with
the supervised models against our detection system’s semi-
supervised models that were only trained with CAV workload
data. False positive rate (FPR: %, lower is better) is
on the x-axis and recall (TPJJ_%, higher is better) is on the
y-axis. Areas under each model’s curve (AUCs) are given
in the legend. AUCs closest to one have the best model
performances. We found KNN to be the least effective model
with a 0.500 AUC (equivalent to random guessing), while its

Vit attack ROCs - supervised vs. semi-supervised

1.0

0.8

Recall

0.4

---- KNN - AUC 0.500
P -~ SVM - AUC 0.997
0.2 ---- RF-AUC 0.879

- —— OCNN - AUC 0.969
—— OCSVM - AUC 0.988
P —— iF-AUC 0.974
00 V —— LOF - AUC 0.971

0.0 0.2 0.4 0.6 0.8 1.0
False Positivity Rate

Figure 4: ROC curves for Viterbi attack detection with SoC A
using supervised (dashed) and semi-supervised (solid) models,
with AUCs (areas under curves, higher is better) in the legend.
Most semi-supervised detection models outperformed their
supervised counterparts that were trained on FFT attack data.

AUCs for FFT + Viter

AUCs for Viterbi Attack
- E S R S—

0.8

0.6

8} 8}
=} =}
< <
0.4 0.4
—e-- OCNN o OCNN
+—- OCSVM +—- OCSVM
0.2 e F 0.2 .
4 LOF +- LOF

0.0 0.0

10 15 20 25 30
Max Incoming Messages per Timestep

(a) Viterbi Attack

10 15 20 25 30
Max Incoming Messages per Timestep

(b) FFT + Viterbi Attack

Figure 5: AUC impact for each model when incoming message
traffic variability of CAV workload increases (higher is better).
OCSVM and iForest maintain high AUCs for both attacks.

semi-supervised counterparts OCNN and LOF showed robust
performance with AUCs of 0.969 and 0.971, respectively.
Random forests had a 0.879 AUC, but it was surpassed by its
semi-supervised counterpart iForest which had a 0.974 AUC.
SVM slightly outperformed its semi-supervised counterpart
OCSVM, but both had the two largest AUCs at 0.997 and
0.988, respectively. These results show that semi-supervised
ML models used in our anomaly detection system are supe-
rior at detecting “unknown” attacks compared to supervised
models that are trained with data from similar attacks.

Storage Requirements: While iForest and LOF models had
comparable detection accuracy to OCSVM, iForest required
significantly more storage at about 807.3KB and LOF required
316.0KB. The OCNN model required 187.0KB. We found the
OCSVM model required the smallest amount of storage at just
2.9KB, making it lightweight and ideal for fast detection.

2) SoCurity Robustness: We stress tested the SoCurity
detection system to see how Viterbi-based attack detection
is impacted under conditions with much higher incoming

Attack Detection Cycles | Accuracy | FPR
FFT 0.96 0.96 0.04
Viterbi 2.82 0.87 0.05
FFT + Viterbi 1.06 0.87 0.06
Memory 2.22 0.60 0.05

Table II: Average detection cycles to flag the attack (lower is
better), accuracy (higher is better), and FPR (%’ lower
is better) for each attack on SoC A emulated on the FPGA.
Accuracy correlates with impact (Table I).

message traffic for the CAV workload, simulating extreme
urban settings with large CAV presence. Message traffic was
randomized with up to 3, 12, 21, and 30 incoming messages of
random size per time step on SoC A. Beyond three messages,
Viterbi accelerators faced increased task loads. Fig. 5 shows
AUC:s for detecting Viterbi and FFT + Viterbi attacks under
these conditions for each semi-supervised model on SoC A.
For Viterbi attacks (Fig. 5a), OCSVM and iForest maintained
high AUCs with increasing variability, while OCNN and LOF
had decreased AUC with higher variability. As distance-based
models, OCNN and LOF struggled to distinguish between high
Viterbi activity due to incoming message traffic and the Viterbi
attack. In contrast, OCSVM and iForest incorporate feature
relations for a stronger model. For FFT + Viterbi attacks
(Fig. 5b), all models maintained high accuracy. OCNN and
LOF distinguished anomalous activity better with the presence
of increased FFT activity from the attack, tracking with their
high detection performance for the FFT-only attack (Fig. 3).
Overall, using OCSVM or iForest for detection, SoCurity is
robust to highly variable swarm communication conditions
processed by the CAV workload.

3) Fast and Lightweight SoCurity in Action on the CAV
SoC: We selected OCSVM for online experiments as it was
the most lightweight model, with two orders of magnitude
less storage than others. It also performed well across all
offline tests on SoC A and was robust against higher variability
introduced to the base workload. We statically trained the
model and deployed it on the FPGA with m2cgen [41]. When
run on the 78MHz FPGA, the OCSVM model had a 320us
prediction time (32us on an ASIC [18]). This prediction time
better represents detection time for an SoC with a dedicated
SoCurity analyzer unit. In this study, the SoCurity analyzer
shared the single core in SoC A with the CAV workload and
the attacks, limiting detection cycles to every 100ms.

Table II presents average detection cycles required to flag
attacks after they are launched, accuracy (735 T IPHIN),

TP+FP+TN+FN
and FPRs (%) for each DoS attack on the FPGA. TP and
FN were counted as prediction cycles during each attack where
counters were predicted anomalous and benign, respectively.
TN and FP were counted as the cycles before and after each
attack where counters were predicted benign and anomalous,
respectively. The OCSVM model had low FPRs for each
attack and high accuracy for accelerator-based DoS attacks.
Due to the memory attack’s lower impact (Table I), some
counter cycles were not as recognizably anomalous so the

model had lower detection accuracy. Nonetheless, the attack

DoS Attack Detection on SoC B
FFT attack Viterbi attack

IF_ ’

LOF

500 1000 1500 2000 2500 0O
FFT + Viterbi attack

°

500 1000 1500 2000 2500 3000
Memory attack

°

500 1000 1500 2000 2500 3000 O 500 1000 1500 2000 2500
samples Samples

FN mmm TP wem FP mmm TN

Figure 6: FN, TP, FP, TN for each model and attack. Low FN
and FP are better. All models performed well on FFT attacks.
LOF performed well for all attacks.

was detected within a few detection cycles, so this anomalous
behavior would be quickly investigated by the localization
engine. These results demonstrate SoCurity’s strong abilities
for effective anomaly detection in heterogeneous SoCs.

4) DoS Attack Localization on the Multicore SoC B:
The multicore design of SoC B was used to test localization
capability with SoCurity’s NoC counters. In this paper, we do
not go into the details around our localization methodology,
but we briefly summarize our detection and localization results
from experiments on SoC B in this section.

NoC counter data that is flagged by the anomaly detec-
tion engine is sent to the localization engine so first, we
needed to evaluate anomaly detection performance of the semi-
supervised models on DoS attacks running on SoC B. Fig. 6
shows the FNs, TPs, FPs, and TNs resulting from running
detection with each model on each attack on counter data
collected from SoC B. These tests revealed LOF to perform the
best overall for detecting each attack with low FNs and FPs.
We thus used the LOF model in localization tests for SoC B.
Leveraging explainable Al techniques [2, 27], we found that
DoS attacks were able to be located with up to 99% accuracy.

Overall our results indicate that SoCurity could successfully
be used to build a secure foundation into hardware designs for
domain-specific SoCs such as those powering CAVs.

IV. ADVANCING SECURITY AND RELIABILITY FOR SOCS

While our study showed that SoCurity performed well for
DoS attack detection within an SoC, the SoCurity approach
has the potential to provide protection against other threats
as well. In the next part of this work, we discuss how the
SoCurity methodology may benefit security and reliability in
SoCs beyond DoS attack detection.

SoCurity may be useful in detection of several other threats.
For example, SoCurity counters can detect black hole router
attacks launched by hardware trojans, where one node in the
NoC drops all received packets, creating a “black hole” in the
network [11]. Such attacks would result in clear impacts on
hardware activity monitored by SoCurity counters. Likewise,

side channel attacks like Prime+Probe [28] that repeatedly
access shared resources to learn secrets can be detected as
prior work showed that they impact hardware counters [12].
SoCurity counters can also be expanded to support power
token monitoring [35] and detect if malicious actors interject
and manipulate token flow, which could cause imbalanced
power and overheating in the SoC.

Additionally, SoCurity can be used to improve hardware
reliability. Resources may fail to operate as expected, caus-
ing slowdowns that are reflected in SoCurity counters. One
example is silent data corruption (SDC), in which a CPU
produces incorrect computational results [13]. Typically, SDC
is considered to be a major problem at large scales, such as
in data centers where there is a much higher potential for
errors to occur and propagate [31]. SoCs that power edge
devices may not be as susceptible to such SDC errors in
isolation. However, many edge devices are backed by some
larger cloud system where SDC may present a more significant
threat. When edge devices rely on the cloud for important or
computationally expensive information, they are also exposed
to this SDC risk. Particularly as we see larger and larger
Al models (e.g., generative Al models) provide services to
edge devices, whether through the cloud or within the device
itself, having built-in protection against otherwise untraceable
hardware faults such as SDC will be invaluable. Though
SDC errors are not identifiable by existing error handling
systems, it may be possible to use SoCurity counters to
detect NoC communication pattern changes caused by SDC
within an SoC or resulting from SDC-impacted data received
from the cloud. Prior works have shown some success with
using CPU hardware performance counters on single and
multicore systems [5, 16, 21, 22]. Extending SDC analysis
to SoC layouts using NoC counters can close the gap made
by the presence of non-CPU cores within an SoC that may
be impacted by SDC. This area in particular may benefit
from anomaly localization methodology that we have found to
work well with SoCurity in our case study (§II1-C4). In future
studies, we plan to experiment with such SDC detection and
localization possibilities using SoCurity.

V. RELATED WORK

Over the last decade, several prior works explored CPU
hardware performance counters for anomaly and attack de-
tection using ML models [4, 12, 20, 29, 30]. As discussed
in [9], several works have also explored security measures for
NoC-based SoCs in which CPU performance counters are not
a sufficient solution. [30] evaluated malware detection with
CPU performance counters from cores on an SoC and found
high FPRs averaging 11.3%. They also explored an approach
similar to [37] in which coherence NoC traffic information
is extracted from packets to train and detect DoS attacks.
SoCurity takes a simpler approach by integrating counters in
the NoC that do not require extracting additional information
from packets. Further, the NoC counters provide a broad set
of data that is not limited to coherence packets and is thus
better suited for heterogeneous SoCs in which accelerators

may make DMA requests instead. On the other hand, [8] took
an unrealistic approach for DoS detection in an SoC by relying
on predictability of NoC traffic latencies and [33] explored
detection of bandwidth denial attacks by a malicious NoC.

VI. CONCLUSION

In this work, we presented SoCurity as the basis for de-
veloping security and reliability solutions in domain-specific
heterogeneous SoCs through hardware activity monitoring
at the NoC-level with NoC-based hardware counters that
track interactions between SoC components. We discussed
experimental studies performed with SoCurity and explored
several other use cases for expanding on its capabilities. As our
systems get more complex with higher demands for security
and reliability needs to be met, it is critical that we take these
aspects into consideration at earlier design stages such that
hardware-level protection can be provided through strong, yet
lightweight means such as SoCurity.

REFERENCES

[1] P. Bannon, G. Venkataramanan, D. D. Sarma, and E. Talpes, “Computer
and redundancy solution for the full self-driving computer,” in
2019 IEEE Hot Chips 31 Symposium (HCS), Cupertino, CA, USA,
August 18-20, 2019. 1EEE, 2019, pp. 1-22. [Online]. Available:
https://doi.org/10.1109/HOTCHIPS.2019.8875645

[2] A. Barbado, O. Corcho, and R. Benjamins, “Rule extraction in
unsupervised anomaly detection for model explainability: Application
to OneClass SVM,” Expert Syst. Appl., vol. 189, p. 116100, 2022.
[Online]. Available: https://doi.org/10.1016/j.eswa.2021.116100

[3] S. Borkar and A. A. Chien, “The future of microprocessors,”
Commun. ACM, vol. 54, no. 5, pp. 6777, 2011. [Online]. Available:
https://doi.org/10.1145/1941487.1941507

[4] M. Bourdon, P. Gimenez, E. Alata, M. Kaaniche, V. Migliore,
V. Nicomette, and Y. Laarouchi, “Hardware-performance-counters-based
anomaly detection in massively deployed smart industrial devices,”
in 19th IEEE International Symposium on Network Computing
and Applications, NCA 2020, Cambridge, MA, USA, November
24-27, 2020. 1EEE, 2020, pp. 1-8. [Online]. Available: https:
//doi.org/10.1109/NCA51143.2020.9306726

[5] F. A. Bower, D. J. Sorin, and S. Ozev, “A mechanism for online
diagnosis of hard faults in microprocessors,” in 38th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-38 2005), 12-16
November 2005, Barcelona, Spain. 1EEE Computer Society, 2005, pp.
197-208. [Online]. Available: https://doi.org/10.1109/MICRO.2005.8

[6] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001. [Online]. Available: https://doi.org/10.1023/A:1010933404324

[7] M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander, “LOF:
identifying density-based local outliers,” in Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data,
May 16-18, 2000, Dallas, Texas, USA, W. Chen, J. F. Naughton, and
P. A. Bernstein, Eds. ACM, 2000, pp. 93-104. [Online]. Available:
https://doi.org/10.1145/342009.335388

[8] S. Charles, Y. Lyu, and P. Mishra, “Real-time detection and localization
of distributed dos attacks in noc-based socs,” IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., vol. 39, no. 12, pp. 4510-4523, 2020.
[Online]. Available: https://doi.org/10.1109/TCAD.2020.2972524

[9] S. Charles and P. Mishra, “A survey of network-on-chip security attacks
and countermeasures,” ACM Comput. Surv., vol. 54, no. 5, pp. 101:1-
101:36, 2022. [Online]. Available: https://doi.org/10.1145/3450964

[10] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273-297, 1995. [Online]. Available: https:
//doi.org/10.1007/BF00994018

[11] L. Daoud and N. Rafla, “Analysis of black hole router attack in
network-on-chip,” in 62nd IEEE International Midwest Symposium on
Circuits and Systems, MWSCAS 2019, Dallas, TX, USA, August 4-7,
2019, H. Lee and R. L. Geiger, Eds. IEEE, 2019, pp. 69-72. [Online].
Available: https://doi.org/10.1109/MWSCAS.2019.8884979

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,
S. Sethumadhavan, and S. J. Stolfo, “On the feasibility of online
malware detection with performance counters,” in The 40th Annual
International Symposium on Computer Architecture, ISCA’13, Tel-Aviv,
Israel, June 23-27, 2013, A. Mendelson, Ed. ACM, 2013, pp.
559-570. [Online]. Available: https://doi.org/10.1145/2485922.2485970
H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy,
B. Muthiah, and S. Sankar, “Silent data corruptions at scale,” CoRR,
vol. abs/2102.11245, 2021. [Online]. Available: https://arxiv.org/abs/
2102.11245

E. Fix and J. L. Hodges, “Discriminatory analysis. nonparametric
discrimination: Consistency properties,” International Statistical Re-
view/Revue Internationale de Statistique, vol. 57, no. 3, pp. 238-247,
1989.

D. Giri, K.-L. Chiu, G. Eichler, P. Mantovani, and N. Chandramoorthy,
“Ariane + NVDLA: Seamless third-party IP integration with ESP,” in
CARRYV, 2020.

S. K. S. Hari, M. Li, P. Ramachandran, B. Choi, and S. V. Adve,
“mswat: low-cost hardware fault detection and diagnosis for multicore
systems,” in 42st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-42 2009), December 12-16, 2009, New
York, New York, USA, D. H. Albonesi, M. Martonosi, D. I. August, and
J. F. Martinez, Eds. ACM, 2009, pp. 122-132. [Online]. Available:
https://doi.org/10.1145/1669112.1669129

N. Hossain, A. Buyuktosunoglu, J. Wellman, P. Bose, and M. Martonosi,
“Socurity: A design approach for enhancing SoC security,” IEEE
Comput. Archit. Lett., vol. 22, no. 2, pp. 105-108, 2023. [Online].
Available: https://doi.org/10.1109/LCA.2023.3301448

T. Jia, P. Mantovani, M. C. dos Santos, D. Giri, J. Zuckerman, E. J.
Loscalzo, M. Cochet, K. Swaminathan, G. Tombesi, J. J. Zhang,
N. Chandramoorthy, J. Wellman, K. Tien, L. P. Carloni, K. L. Shepard,
D. Brooks, G. Wei, and P. Bose, “A 12nm agile-designed SoC for
swarm-based perception with heterogeneous IP blocks, a reconfigurable
memory hierarchy, and an 800MHz multi-plane NoC,” in 48th IEEE
European Solid State Circuits Conference, ESSCIRC 2022, Milan,
Italy, September 19-22, 2022. 1EEE, 2022, pp. 269-272. [Online].
Available: https://doi.org/10.1109/ESSCIRC55480.2022.9911456

S. S. Khan and A. Ahmad, “Relationship between variants of one-class
nearest neighbors and creating their accurate ensembles,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1796-1809, 2018. [Online].
Available: https://doi.org/10.1109/TKDE.2018.2806975

A. P. Kuruvila, S. Karmakar, and K. Basu, “Time series-based malware
detection using hardware performance counters,” in /EEE International
Symposium on Hardware Oriented Security and Trust, HOST 2021,
Tysons Corner, VA, USA, December 12-15, 2021. 1EEE, 2021,
pp. 102-112. [Online]. Available: https://doi.org/10.1109/HOST49136.
2021.9702291

M. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S.
Adve, and Y. Zhou, “Trace-based microarchitecture-level diagnosis
of permanent hardware faults,” in The 38th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN
2008, June 24-27, 2008, Anchorage, Alaska, USA, Proceedings.
IEEE Computer Society, 2008, pp. 22-31. [Online]. Available:
https://doi.org/10.1109/DSN.2008.4630067

M. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou, “Understanding the propagation of hard errors to software and
implications for resilient system design,” in Proceedings of the 13th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2008, Seattle, WA, USA,
March 1-5, 2008, S. J. Eggers and J. R. Larus, Eds. ACM, 2008, pp.
265-276. [Online]. Available: https://doi.org/10.1145/1346281.1346315
Y. Li and Q. Liu, “A comprehensive review study of cyber-attacks
and cyber security; emerging trends and recent developments,” Elsevier
Energy Reports, vol. 7, pp. 8176-8186, 2021.

F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation forest,” in Proceedings of
the 8th IEEE International Conference on Data Mining (ICDM 2008),
December 15-19, 2008, Pisa, Italy. TIEEE Computer Society, 2008, pp.
413-422. [Online]. Available: https://doi.org/10.1109/ICDM.2008.17

S. P. Lloyd, “Least squares quantization in PCM,” [EEE Trans.
Inf. Theory, vol. 28, no. 2, pp. 129-136, 1982. [Online]. Available:
https://doi.org/10.1109/T1T.1982.1056489

P. Mantovani, D. Giri, G. D. Guglielmo, L. Piccolboni, J. Zuckerman,
E. G. Cota, M. Petracca, C. Pilato, and L. P. Carloni, “Agile
soc development with open ESP : Invited paper,” in IEEE/ACM

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

International Conference On Computer Aided Design, ICCAD 2020,
San Diego, CA, USA, November 2-5, 2020. 1EEE, 2020, pp. 96:1-96:9.
[Online]. Available: https://doi.org/10.1145/3400302.3415753

H. Nunez, C. Angulo, and A. Catala, “Rule extraction from
support vector machines,” in /0th Eurorean Symposium on Artificial
Neural Networks, ESANN 2002, Bruges, Belgium, April 24-26,
2002, Proceedings, M. Verleysen, Ed., 2002, pp. 107-112. [Online].
Available: https://www.esann.org/sites/default/files/proceedings/legacy/
€s2002-51.pdf

D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of AES,” in Topics in Cryptology - CT-RSA, 2006.
M. Ozsoy, C. Donovick, I. Gorelik, N. B. Abu-Ghazaleh, and D. V.
Ponomarev, “Malware-aware processors: A framework for efficient
online malware detection,” in 27st IEEE International Symposium on
High Performance Computer Architecture, HPCA 2015, Burlingame,
CA, USA, February 7-11, 2015. 1EEE Computer Society, 2015, pp. 651—
661. [Online]. Available: https://doi.org/10.1109/HPCA.2015.7056070

Z. Pan, J. Sheldon, C. Sudusinghe, S. Charles, and P. Mishra, “Hardware-
assisted malware detection using machine learning,” in Design,
Automation & Test in Europe Conference & Exhibition, DATE 2021,
Grenoble, France, February 1-5, 2021. 1EEE, 2021, pp. 1775-1780.
[Online]. Available: https://doi.org/10.23919/DATES1398.2021.9474050
G. Papadimitriou and D. Gizopoulos, “Silent data corruptions:
Microarchitectural perspectives,” [EEE Trans. Computers, vol. 72,
no. 11, pp. 3072-3085, 2023. [Online]. Available: https://doi.org/10.
1109/TC.2023.3285094

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. VanderPlas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in python,” J.
Mach. Learn. Res., vol. 12, pp. 2825-2830, 2011. [Online]. Available:
https://dl.acm.org/doi/10.5555/1953048.2078195

R. J. S., D. M. Ancajas, K. Chakraborty, and S. Roy, “Runtime
detection of a bandwidth denial attack from a rogue network-
on-chip,” in Proceedings of the 9th International Symposium on
Networks-on-Chip, NOCS 2015, Vancouver, BC, Canada, September
28-30, 2015, A. Ivanov, D. Marculescu, P. P. Pande, J. Flich, and
K. Pattabiraman, Eds. ACM, 2015, pp. 8:1-8:8. [Online]. Available:
https://doi.org/10.1145/2786572.2786580

B. Scholkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and
J. C. Platt, “Support vector method for novelty detection,” in Advances
in Neural Information Processing Systems 12, [NIPS Conference,
Denver, Colorado, USA, November 29 - December 4, 1999], S. A.
Solla, T. K. Leen, and K. Miiller, Eds. The MIT Press, 1999, pp.
582-588. [Online]. Available: http://papers.nips.cc/paper/1723-support-
vector-method-for-novelty-detection

P. Shah, R. G. Shenoy, V. Srinivasan, P. Bose, and A. Buyuktosunoglu,
“Tokensmart: Distributed, scalable power management in the many-core
era,” ACM Trans. Archit. Code Optim., vol. 20, no. 1, pp. 4:1-4:26,
2023. [Online]. Available: https://doi.org/10.1145/3559762

S. Simpson, “Systems on a chip comes to the data center,” McKinsey
Digital, 2022, https://www.mckinsey.com/capabilities/mckinsey-digital/
our-insights/tech-forward/systems-on-a-chip-comes-to-the-data-center.
C. Sudusinghe, S. Charles, and P. Mishra, “Denial-of-service attack
detection using machine learning in network-on-chip architectures,”
in NOCS ’21: International Symposium on Networks-on-Chip, Virtual
Event, October 14-15, 2021, T. Krishna, J. Kim, S. Abadal, and
J. S. Miguel, Eds. ACM, 2021, pp. 35-40. [Online]. Available:
https://doi.org/10.1145/3479876.3481589

A. Vega, A. Buyuktosunoglu, and P. Bose, “Towards “smarter”
vehicles through cloud-backed swarm cognition,” in 2018 I[EEE
Intelligent Vehicles Symposium, IV 2018, Changshu, Suzhou, China,
June 26-30, 2018. 1EEE, 2018, pp. 1079-1086. [Online]. Available:
https://doi.org/10.1109/IVS.2018.8500627

A. J. Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,” [EEE Trans. Inf.
Theory, vol. 13, no. 2, pp. 260-269, 1967. [Online]. Available:
https://doi.org/10.1109/TIT.1967.1054010

F. Zaruba and L. Benini, “The cost of application-class processing:
Energy and performance analysis of a linux-ready 1.7-ghz 64-bit
RISC-V core in 22-nm FDSOI technology,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 27, no. 11, pp. 2629-2640, 2019. [Online].
Available: https://doi.org/10.1109/TVLS1.2019.2926114

[41]

[42]

I. Zeigerman, V. Yershov, and N. Titov, “m2cgen: Model 2 code
generator,” 2019, https://github.com/BayesWitnesses/m2cgen.

J. Zuckerman, D. Giri, J. Kwon, P. Mantovani, and L. P. Carloni,
“Cohmeleon: Learning-based orchestration of accelerator coherence
in heterogeneous socs,” in MICRO ’21: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, Virtual Event, Greece,
October 18-22, 2021. ACM, 2021, pp. 350-365. [Online]. Available:
https://doi.org/10.1145/3466752.3480065

