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Abstract—Genome sequencing is a key component of precision
health, allowing us to tailor treatment to individuals based on
their genetics. Reference-guided assembly is the most common
for complete human genome construction, but most genomes are
sequenced using a linear reference, which does not encapsulate
the diversity of our species. This leads to poor alignment quality
and variant detection.

Alignment to a graph composed of multiple references, pange-
nomics, presents a promising alternative, but introduces a new
set of tools with different, and often greater computational
requirements. These workloads, and the increasing volume of
sequencing data, require specialized hardware to keep up with
demand. To design and evaluate such hardware, insights are
needed into the characterization and bottlenecks of common
pangenomics workloads. In this work, we present an overview
of the pangenomics pipeline and an algorithmic overview of two
leading pangenomics alignment tools for short and long reads
respectively. We also provide a timing and microarchitecture
analysis of these tools to inform future research.

Index Terms—pangenomics, benchmarking, alignment

I. INTRODUCTION

Genome sequencing is a key component of precision health,
allowing us to tailor treatment to individuals based on their
genetics. Genome sequencing offers critical insights for early
detection and management of various conditions including
cancer, autism, infectious diseases like COVID-19, and genetic
disorders. A decade ago, it cost $10 million to sequence a sin-
gle genome, but today we can do the same for less than $1000
[1]]. This has resulted in a large volume of sequencing data that
poses significant computational challenges and requires novel
computing solutions to keep pace [?2].

Since the construction of the first human genome more
than 20 years ago, most genomes have been sequenced using
a linear reference, but it is impossible to encapsulate the
diversity of our species in a single genome. When we use
such a limited reference, we lose sequencing accuracy, and
we misidentify important variants. Consequently, researchers
are turning to reference graphs composed of multiple genomes.
These multi-reference graphs, called pangenomes, demonstrate
superior alignment accuracy compared to traditional linear
sequence alignment methods [3]. The transition from linear
to pangenome reference necessitates the establishment of
new benchmarks to evaluate pangenome sequence alignment
software performance. Understanding this new domain is
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crucial for guiding the design of future hardware and software
genomics accelerators.

Alignment to pangenomes can be performed for short reads
(50-150 base pairs long) or long reads (1,000-30,000+ base
pairs long). Short reads are the cheapest and most common, but
long reads are gaining popularity as sequencing costs decrease.

In this work, we make the following contributions.

1) We present an overview of the pangenome reference
guided assembly pipeline, identifying popular tools in
each step.

2) We describe the algorithms and compute patterns of two
popular pangenome alignment tools for short and long
reads respectively.

3) We profile the tools to identify bottlenecks and measure
microarchitecture utilization.

The tools analyzed complement existing benchmarks [/1]

and will guide further computing research in the Pangenomics
space.

II. BACKGROUND

While linear sequence to reference alignment is robust
to small errors such as SNPs and short INDELSs, it cannot
accurately align larger variants that may span an entire read.
In the best case the aligner will fail to align such a read, but
it may also map it to an incorrect location in the reference.
Pangenomes solve this problem by allowing the read to
align to multiple references with different structural variants.
Pangenome references are usually represented in graph format
with each node representing a subsequence of the reference.
Directed edges connect nodes to link variants. Aligning to
such a graph presents new challenges in both alignment and
reference construction.
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Fig. 1. Workflow for pangenome reference guided assembly. Each stage is
annotated with the common tools used for short and long reads. [4]-[8]

Figure [I] outlines the workflow for aligning to a pangenome
graph for both short and long reads. First, a sample is



collected. The sample is then passed to a sequencer which
reads the nucleotides and generates sequences of raw signals.
In the basecalling process, the signals are interpreted into
reads, sequences of base pairs in the alphabet {A, C, G, T}.
The reads are then mapped onto the pangenome reference in
the alignment process. Additionally, reads may be passed to a
variant caller after alignment to identify variants present in the
genome. We annotate each stage in the figure with common
tools used for that task. The workflow is similar to linear
alignment, but it uses different tools.
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Fig. 2. Workflow for constructing a pangenome reference [6f], [9]—[12]

Pangenomics also introduces a new computational work-
flow, namely graph construction. Figure [2] shows essential
stages in constructing a pangenome reference graph annotated
with common tools used for each task. The processing starts
from either a set of complete reference haplotypes, or a single
reference and a list of known structural variants that index
that reference. The graph is indexed according to the tool that
will be used for alignment. This can usually be done once for
each reference, and then be used to align reads from multiple
patients.

III. PANGENOME ALIGNMENT ALGORITHMS

We examine two tools specific to pangenome sequencing
from the workflow shown in Figure[I] Vg Map for short reads,
and GraphAligner for long reads [6], [8]. In the following
subsections, we will describe the algorithmic steps in each of
the tools.

A. Vg Map

Vg Map [6] is a short read alignment tool that can be broken
down into four algorithmic steps: seeding, clustering, cluster
filtering, and seed/cluster extension. It uses a graph FM-Index,
Generalized Compressed Suffix Array (GCSA) to seed reads
[L1], and clusters them with an approximate distance metric.
Next, it filters out clusters that are too small or have significant
overlap with a larger cluster and are therefore not worth
extending. Every pair of clusters must be considered for a total
of O(n?) comparisons. For each comparison, the algorithm
sorts the seeds in the cluster and finds the intersection of the
two seed sets. Next it extends seeds using a custom variant
of the Smith-Waterman algorithm called Graph SIMD Smith-
Wateramn (GSSW) [13]].

Smith-Waterman is a common extension algorithm for linear
sequence alignment [14]. It operates on an n X m grid where
m is the length of the query, and n is the length of a substring
of the reference, generally within a constant factor of m. It
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Fig. 3. Tllustration of the Graph Simd Smith-Waterman (GSSW) algorithm.
The dynamic programming arrays pictured have the reference string on the
i-axis, and the query string on the j-axis. A cell indexed at (4, j) would hold
the score associated with matching characters ¢ and j from the reference
and query respectively. a) The compute pattern of Farrar style strip mined
Smith-Waterman. Grey shading indicates tiles, and the numbers in each cell
indicate the timestep in which those cells would be computed. The red boxes
indicate the cells to be computed in the next time step. The black arrows
show a typical dependency pattern where the dependencies are computed
before the dependent. The red arrows show a case at the end of a tile where
dependencies are not precomputed. b) In the graph version of Simd Smith-
Waterman, the reference consists of a topological sort of nodes. Dependencies
within a node (the upper cell with black arrows) are handed the same as before,
but dependencies at the head of a node require looking backward to consider
dependencies from multiple parent nodes. This is shown in the lower node
with red arrows to its parent cells.

populates this grid with alignment scores which are calculated
as a function of the left, diagonal, and upper cells, i.e. cell
(i,7) is dependent on cells (i,5 — 1), ( — 1,5 — 1), and
(i — 1,7). The algorithm can be extended to SIMD by strip
mining across a row [I5]. This is illustrated in figure [3|a.
Each row is divided into w tiles, where w is the simd width
of the processor (3 in this example). The tiles are shown with
alternating grey shading. The numbers in the cells correspond
to the order in which they are computed. For example, each
cell with a 1 is computed in the first timestep in a 3-width simd
word. Next the cells with 2, and so on. The red boxes indicate
the cells to be computed in the next timestep. The black
arrows show a dependency in the Smith-Waterman algorithm.
In this case, every dependency has been computed before the
element computed in step 5. However, this scheme leaves some
unresolved dependencies between tiles. The red arrows at the
beginning of a new tile show a dependency from time 4 to
time 6. To resolve this dependency, Simd Smith-Waterman
speculates that the element from time 6 will not contribute to
the computation. Mispeculation is detected at time 6 when the
dependency is computed and can be recovered by recomputing
the speculative cells.

Thus far we have described a linear seed extension al-
gorithm used for read alignment to linear references (one
genome). To extend this to graphs for pangenomes, Vg Map
uses an approach similar to Partial Order Alignment (POA)
[16]. It uses SIMD Smith-Waterman, but instead of a linear
reference on the i-axis, it aligns to a topological sort of a
subgraph of the reference with directed edges between nodes,



where each node corresponds to a range of rows in the graph,
Figure 3| Cells within the body of a node in the dynamic
programming matrix have the same dependencies they would
have in SIMD Smith-Waterman, but cells in the first row of
a node may have dependencies on multiple parents. This is
shown in Figure [B]b with red arrows. Fortunately, because
of the topological sort, these dependencies will always be
computed before they are needed. In this way, Vg Map seed
extension alternates between dense SIMD regions and indirect
graph access dependencies.

B. GraphAligner

GraphAligner operates on long reads [8]]. It uses a fast,
simple minimizer indexing scheme [12], followed by distance-
based clustering, and a less accurate extension algorithm based
on Myers bitvector [[17]. These algorithms make GraphAligner
a poor candidate for short reads [7], but it has been shown to
outperform Vg Map in accuracy for long reads, and achieves a
factor of 10 speedup [8]]. The bottleneck in the GraphAligner
algorithm is bitvector extension.

Myers bitvector extension, like Smith-Waterman, operates
by filling in a dynamic programming matrix, but it does
not support the more sophisticated affine gap scoring method
used in Smith-Waterman. This allows Myers to store rows as
bitvectors, and break the dependencies between rows, which
enables them to execute in parallel. Since the row is encoded
as a bitvector, the SIMD width is also much greater than
with GSSW. The algorithm can be expanded to graphs with
a similar approach to POA where rows may have multiple
dependencies depending on the shape of the graph [18]. To
compute a new row, R;, all parent rows are first merged
via an element-wise minimum to produce a new row, R,,.
R,, can then be used to compute R; as in regular Myers
bitvector. Since graphs may include cycles, it is possible that
the row computed, R;, may change the value of its parent
R,. However, any changes are strictly increasing in score. To
handle such cyclic dependencies the algorithm iterates through
rows with changes until the solution stabilizes.

IV. DATASETS

We use Vg to construct a reference graph from a linear
sequence and vcf file. The linear sequence, GRCh38, is
provided by the Genome Reference Consortium and hosted
by the National Center for Biotechnology Information [19]]
[20]. The variants are generated with minigraph-cactus by the
Human Pangenome Reference Consortium [21]] [22]. We limit
our analysis to chromosome 22 of this reference to keep the
memory requirements manageable.

We evaluate Vg Map on short reads from the human sample
SRR7733443 [23]]. We align the reads to a linear reference
using bwa-mem?2 [23]] to generate a dataset of 4,457,496 reads
from chromosome 22, each 151 base pairs long.

To evaluate GraphAligner, we simulate reads using pbsim2
[24] to generate one million long reads ranging from 500
to 50,000 base pairs in length sampled from the prebuilt
minigraph-cactus Grch38 HPRC reference graph.

V. PERFORMANCE RESULTS

For each tool, we present three metrics:

1) End-to-end walltime of the full application, and the
percentage of time spent on alignment.

2) A timing breakdown of the tool into the algorithmic
stages described in section As these tools are
threaded over reads, we report the results in terms of
CPU time, the time a core spends executing the region
of interest. We collect these statistics with Intel Vtune.

3) A overview of microarchitectural bottlenecks of the tool
collected using Intel Vtune’s Microarchitecture analysis
on the alignment portion of the tool.

The specifications of the system used to collect the data are

recorded in table Il

CPU Intel Xeon Gold 6326 2.90 GHz;
32 threads per socket; 2 sockets
L1 I cache 32Kb, §-way
L1 D cache 48Kb, 12-way
L2 cache 1.3Mb, 20-way
L3 cache 24Mb, 12-way
Memory 8 x 16GB DDR4 2933
TABLE T

SYSTEM CONFIGURATION.

A. Vg Map

The end-to-end wall time of running Vg Map with 64
threads on the short read dataset is 271s. Of that time, 96% is
spent on alignment. The remainder is almost entirely the time
of loading the index (10s).

We further subdivide the time spent in alignment into algo-
rithmic stages identified in section[[II-A] Figure d We find that
cluster filtration and seed extension are the major bottlenecks
for this application. Together, these kernels account for 79.2%
of the alignment time. Seeding and clustering make up a small
fraction of the remaining time, with the rest divided among
many smaller functions, including i/o operations and access to
the graph structure to extract a localized reference subgraph
for alignment.

We also collect microarchitecture information on the full
short-read dataset in the alignment region. Results are shown
in Figure []_-] The application is 24.8% bounded by the front
end. This is expected as most bottlenecks are in compute-
bound kernels, seed extension, and cluster filtering. The ob-
served CPI is 0.634.

B. GraphAligner

Running on the long read dataset with 64 threads,
GraphAligner has a wall time of 4004s. This is substantially
more than Vg Map because the read set is much larger.
Of that time 98% is spent on alignment. Unlike Vg Map,
GraphAligner does not use a cached graph index. This leads to
a little more overhead, but it is a constant cost that is amortized
with many reads. The code could also be redesigned to use a
cached index similar to Vg Map.

IThe segments of the piechart do not add up to exactly 100% due to
sampling inaccuracy with VTune. Mispeculation is measured at 0.0% and
therefore not pictured.
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Fig. 4. Timing breakdown of alignment in vg among the following kernels:
seeding 4.03%) finding seeds in the Graph using a graph FM-Index (GCSA),
cluster 2.99%) grouping seeds into clusters based on distance in the genome,
filter 37.34%) dropping clusters that are too short or overlap a lot with other
clusters, extend 41.94%) Graph Simd Smith-Waterman cluster extension. The
remaining runtime includes some i/o, and graph accesses to set up extension.
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Fig. 5. Vg Map microarchitecture utilization.

Figure (6] illustrates the timing breakdown of alignment in
GraphAligner. Compared to Vg Map, GraphAligner spends
much more time in seed extension. Although its extension
algorithm is faster, the size of the dynamic programming
matrix that must be computed grows as the square of the length
of the read. Since GraphAligner is designed for and evaluated
on long reads, this may explain the seed extension bottleneck.
It also uses a simpler minimizer-based seeding method and
does not have a costly cluster filtration step which can reduce
the number of seed extensions.

Because of the size of the collected data, we profile
GraphAligner’s microarchitecture utilization on a subset of
10,000 reads. The results are shown in figure [7} Multiple
resource constraints bound the application’s performance, but
no single bottleneck is evident. Overall it achieves good
utilization with a CPI of 0.738.
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Fig. 6. Timing breakdown of alignment in GraphAligner among the following
kernels: seeding 2.94%) finding seeds in the graph using a minimizer lookup,
cluster 5.53%) grouping seeds by distance in the graph extension 91.05%)
Myers bitvector cluster extension.
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Fig. 7. GraphAligner microarchitecture utilization.

VI. CONCLUSION

Advancement in genome sequencing technology generates
vast amounts of data and places demand on sequencing
algorithms, which can be met with custom hardware solu-
tions. To understand genomics applications, and evaluate our
designs, we need an understanding of common, compute-
intensive genomics applications that bottleneck current se-
quencing pipelines. Previous work has collected and catego-
rized important kernels for linear reference sequencing [,
but linear references fail to capture the diversity of variants
found amongst our species. We need pangenome sequencing
to improve sequencing accuracy.

We present an analysis of the pangenomics pipeline, and
profile some of the important tools it uses to extract compute-
intensive kernels with new characteristics not found in linear
sequencing.
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