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 New applications have already reached memory wall

 AI applications are bottlenecked by communication overhead rather than compute.

 Scaling rate of AI model (FLOPS & Parameters) far exceeds that of memory 
bandwidth/capacity.

Large-scale AI and Memory Wall

*https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Training FLOPs Scaling
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 Transformer decoder-based structure and two phases 

 Generation stage dominates the execution time.

GPT Characteristics

: Layer which includes GEMV in Generation stage

Generation stage time ratio in GPT-3 execution time*

*J. Choi, Unleashing the Potential of PIM: Accelerating Large Batched Inference of Transformer-Based Generative Models, IEEE CAL, 2023
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GPT Characteristics

 GEMV portion can be 60–80% of total generation latency

Projection FFN MHA LN Others

Projection FFN MHA LN Others

GEMV

GEMV

Others

Others

*Profiling result is measured in A100 System (Fastertransformer + GPT-J, FP16, Input/Output token:32/32)

GPT-j: Google JAX framework 
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GPT H/W Utilization Breakdown 

 As # of tokens increases, GEMV dominate inference time

 Max. utilization is limited by memory bandwidth on GEMV
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Memory Solution for GPT

 AI needs Higher Bandwidth Memory

 Paradigm shift in AI: CNN  LLM(GPT) 
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High Bandwidth Memory Solutions for AI

 HBM provides the Highest Bandwidth in the Market

 Various memory solution can be used depending on System

LHM*

HBM (-PIM)

DDR/LPDDR/GDDR (-PIM)

CMM-D*/CMM-DC

PBSSD/CXL-H/CXL-HC

SRAM

- Yellow-color memories are newly proposed.
* LHM: Low-power High-bandwidth Memory (Ex. LLW)
* CMM: CXL Memory Module

- The products underlined are currently commercially available.
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Besides Bandwidth, Energy also Matters

 Another Limitation of Von Neumann Architecture

 DRAM consumes large energy to transfer data
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Near Memory Solution

 Each near memory solution has its role in the memory hierarchy

 High Bandwidth Memory (HBM) for HPC

 Low-Latency Wide-IO (LLW) for Mobile
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Intelligent Memory and Types

 Three distinct categories in this talk

 CIM: use memory array as a processing unit

 PIM: use embedded logic near memory array as a processing unit

 PNM: use an additional chip for processing inside a memory package or a set
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PIM: Renewed Interest

 ML workloads w/ growing model size need more frequent DRAM accesses, limiting 
performance and dominating energy consumption
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Processing-in-Memory (PIM)

 Utilize internal memory bandwidth by bank-level parallelism

 Proposed by major DRAM vendors (Samsung & SK-Hynix)
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Overview of PIM Architecture

 High on-chip compute bandwidth w/o changing DRAM core circuitry

 Place SIMD FPU at bank IO boundary

 Exploit bank-level parallelism: access multiple banks/FPUs in a lockstep manner

 Expose high on-chip bandwidth of standard DRAM to processors

 Build on industry standard DRAM interfaces and preserve deterministic DRAM timing

 i.e., a DRAM RD/WR command triggers execution of a PIM instruction
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PIM-DRAM: Microarchitecture

 Consist of three major components with DRAM local bus interface: 

 A 16-lane FP16 SIMD FPU array: a pair of 16 FP16 multipliers and adders

 Register files: Command, General, and Scalar register files (CRF, GRF, and SRF)

 A PIM unit controller (fetch and decode, controls pipeline signals, forward)
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HBM-PIM Implementation

 Based on a commercial HBM2 design 

 Off-chip and on-chip bandwidth: 1.23 TB/s and 4.92 TB/s
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HBM-PIM Powered Systems

 Collaborated with two system-board companies

AMD MI50/100-PIM GPU

· Capacity, 24GB (4 cubes)

· PIM performance, 4.9 TFLOPS

Xilinx Alveo U280 FPGA

· Capacity, 12GB (2 cubes)

· PIM performance, 1.9 TFLOPS
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HBM-PIM Evaluation – Performance/Power/Energy

 PIM-HBM improves energy efficiency by

 both shorter execution time and lower average power consumption.
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HBM-PIM Cluster

 Installed 96 AMD MI100 GPUs fabricated with HBM-PIM 

HBM-PIM cluster

· 12 nodes interconnected

through 200G InfiniBand network 

· Total 96 MI100-PIM GPUs in a cluster

Server node

· 8 MI100-PIM GPUs per node

AMD MI100-PIM GPU

· Capacity, 24GB (4 cubes)

· PIM performance, 4.9 TFLOPS
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Evaluation Results on MoE Model

 Performance 2x and Energy efficiency 3x compared to normal GPU

Energy efficiency
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PIM Value on GPT

 OpenAI's focus is on developing new AI technologies and pushing the boundaries of what is 
possible with AI, so it's possible that they will explore the use of PIM technology at some point in 
the future. 

 AMD, access energy can be improved by execute the main algorithm kernel directly in 
memory

 Dr. Lisa Su, Energy reduction by 85% compared to using conventional HBM
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Case Study on Commercial DRAM Technology

 UPMEM

 Hynix GDDR6

 AiMX (PIM cluster) based on Hynix GDDR6

Reference: The true Processing In Memory accelerator, Hotchips ’19

Real-world Implementation and Future of AI Acceleration Systems

based on Processing-in-Memory



On-Device AI & LPDDR-PIM

 Growing Importance of On-Device AI

 Data center costs and power consumption are increasing

 Privacy concerns are rising as sensitive data is transmitted to the cloud for processing

 Network connectivity is not always reliable or available, particularly in remote areas

 LPDDR-PIM improves battery life and prevents memory over-provisioning just for bandwidth

Privacy Protection Low Latency Low Power & Low Cost

Real-world Implementation and Future of AI Acceleration Systems

based on Processing-in-Memory



LPDDR-PIM Introduction

 LPDDR-PIM improves performance and energy efficiency of the system with in-DRAM 
processing

 Performance: Utilizes up to 8x higher in-DRAM bandwidth by bank parallel operation

 Energy Efficiency: Reduces data movement energy by utilizing in-DRAM processing unit 
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LPDDR-PIM System Perf./Power Analysis

 LPDDR-PIM improves energy efficiency by shorter execution time.

 Power consumption of DRAM internal component (red) increases proportionally

 Power consumption of global I/O bus (light red) and I/O PHYs (light blue) considerably decreases
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Summary

 Generative AI requires High-Bandwidth and High-Capacity Memories.

 Memory vendors provide Various Memory Solutions to meet requirements.

 HBM for server and LLW for edge and mobile

 Processing capability in Memory enables higher bandwidth and energy efficiency.

 CIM, PIM and PNM are meaningful and heavily studied in school and industry.

 PIM: Still lots of challenges to be solved for commercializing.

 Specially, LPDDR-PIM is being prepared for on-device AI.

 Need strong collaboration between system, processor, memory and software.
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