

VPP: The <u>Vulnerability-Proportional</u> <u>Protection Paradigm Towards</u> <u>Reliable Autonomous Machines</u>

Zishen Wan^{1*}, Yiming Gan^{2*}, Bo Yu³, Arijit Raychowdhury¹, Yuhao Zhu²

¹Georgia Institute of Technology ²University of Rochester ³PerceptIn (*Equal Contributions)

DOSSA-5 @ISCA 2023

Outline

- Motivation Why autonomous system needs reliability
- What is Autonomous Machine System
 - The concept of frontend and backend autonomous machine kernels
- VPP Framework
 - System performance and resiliency characterization
 - Vulnerable-proportional protection
- Evaluations
 - Autonomous vehicle and drone

Autonomous Machines

Efficiency

Performance

Goal: Improve task accuracy (Autonomy Algorithms)

Goal: Improve data and compute efficiency (Hardware Architecture)

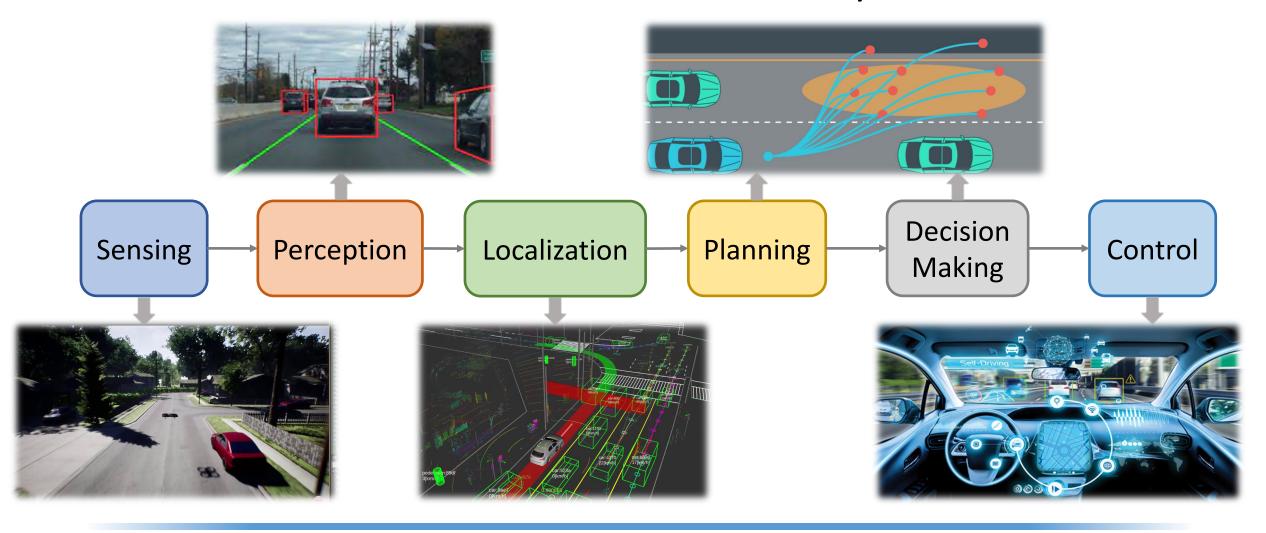
- [1] Telsa Autopilot System Found Probably at Fault in 2018 Crash, The New York Times, 2021
- [2] Surviving an In-Flight Anomaly: What Happened on Ingeuity's Sixth Flight, NASA Science, 2021

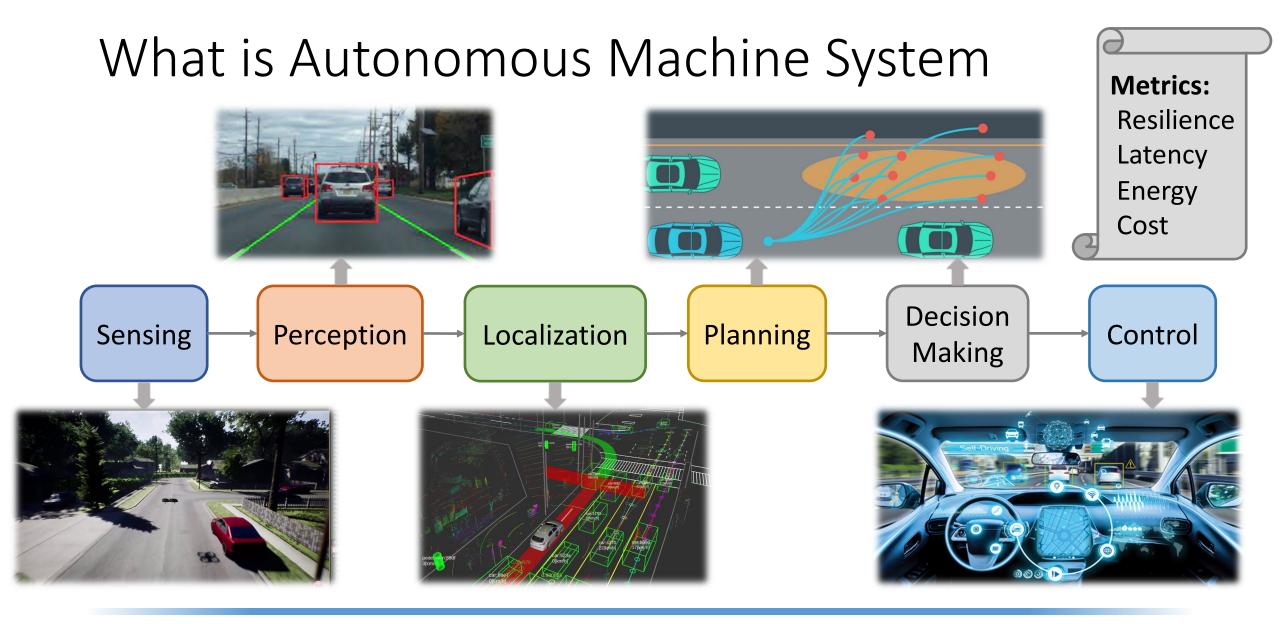
Goal: Improve operational resiliency under faults without degrading performance and efficiency

Reliability

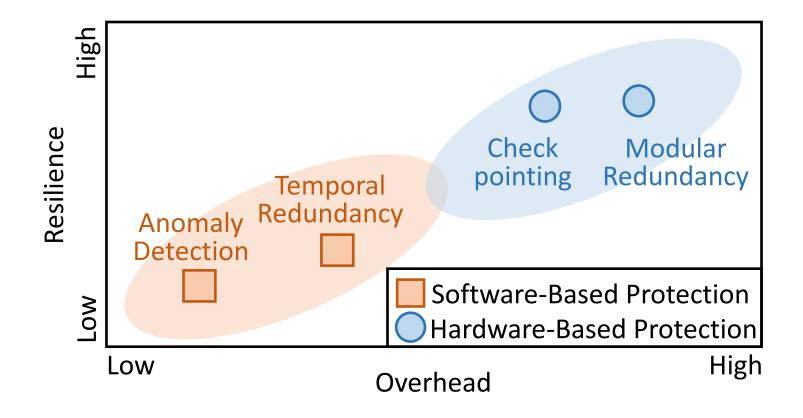
Autonomous Machines

Performance

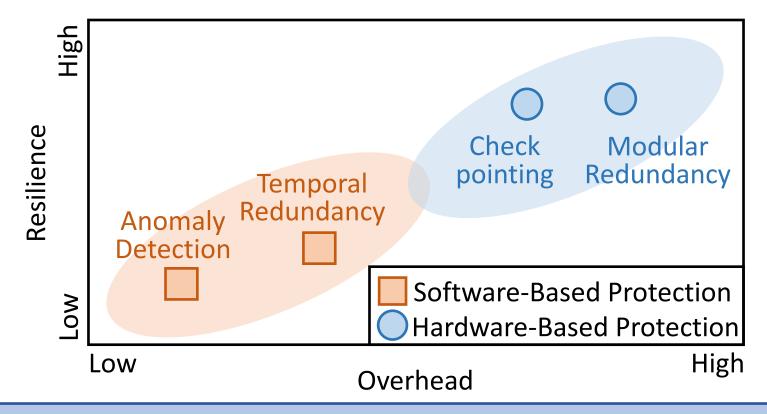

Performance-Efficiency-Reliability
Co-Optimization


Efficiency

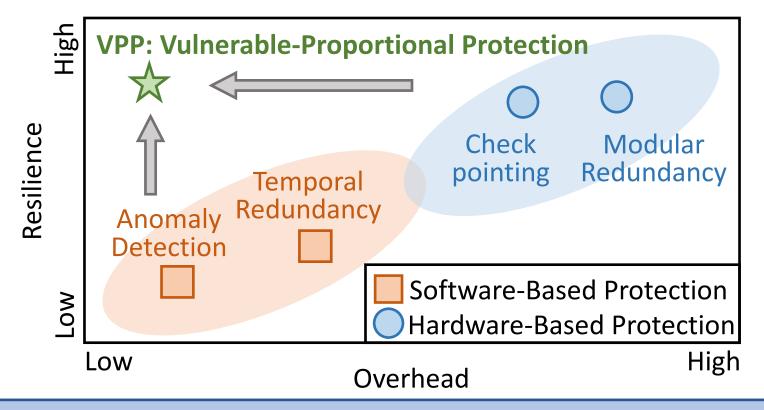
Goal: Improve task accuracy (Autonomy Algorithms)


Goal: Improve data and compute efficiency (Hardware Architecture)

What is Autonomous Machine System



Design Landscape of Protection Techniques

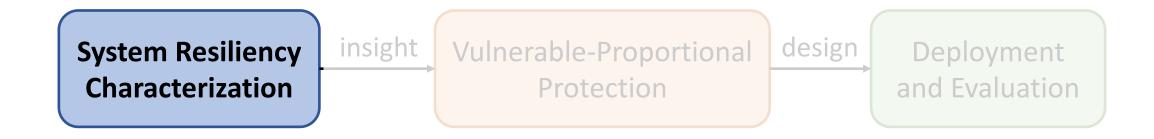

Challenge

<u>Challenge</u>: Today's resiliency solutions are of "<u>one-size-fits-all</u>" nature: they use the same protection scheme throughout entire autonomous machine, bringing <u>trade-offs</u> between resiliency and cost

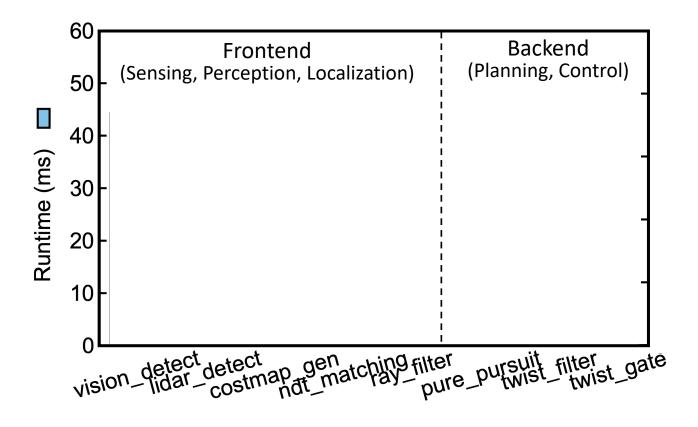
How to provide high protection coverage while introducing little cost for autonomous machine system?

Insight & Solution

Insight & Solution: exploit the *inherent resiliency variations* in autonomous machine system to conduct *vulnerable-proportional protection (VPP)*


VPP Overview

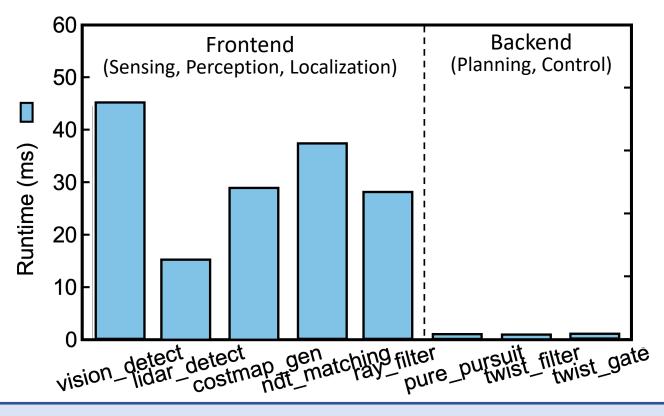
(VPP: <u>V</u>ulnerability-<u>P</u>roportional <u>P</u>rotection)



VPP Overview

(VPP: <u>V</u>ulnerability-<u>P</u>roportional <u>P</u>rotection)

System Characterization - Autonomous Vehicle

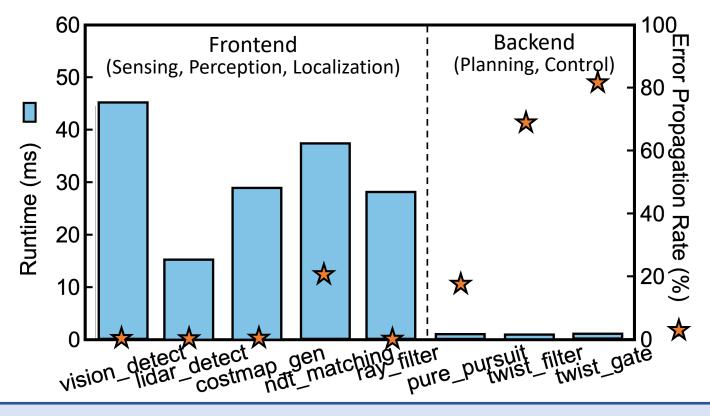


Experimental Setup

Platform: Autonomous
 Vehicle (Autoware^[1])

[1] Kato et al, IEEE Micro, 2015

System Characterization - Autonomous Vehicle

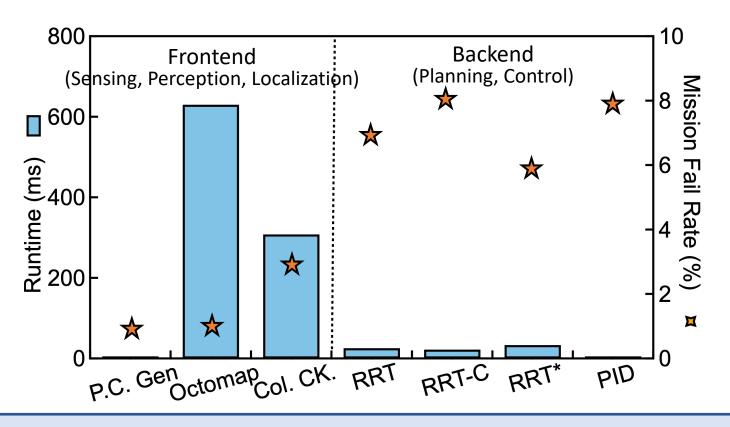

Experimental Setup

Platform: Autonomous
 Vehicle (Autoware^[1])

[1] Kato et al, IEEE Micro, 2015

Insight: frontend high latency backend low latency

System Characterization - Autonomous Vehicle


Experimental Setup

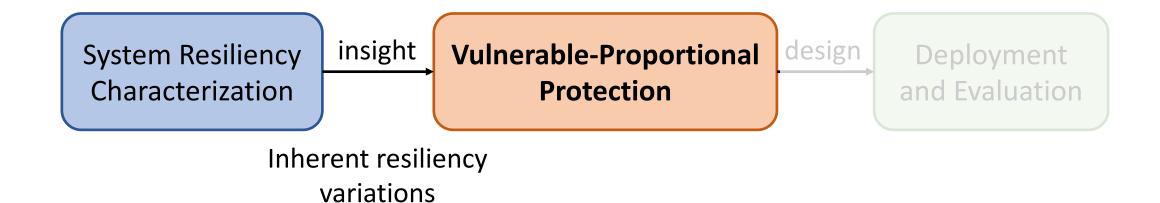
- Platform: Autonomous Vehicle (Autoware^[1])
- Reliability: soft errors

[1] Kato et al, IEEE Micro, 2015

Insight: frontend high latency, low vulnerability backend low latency, high vulnerability

System Characterization - Autonomous Drone

Experimental Setup

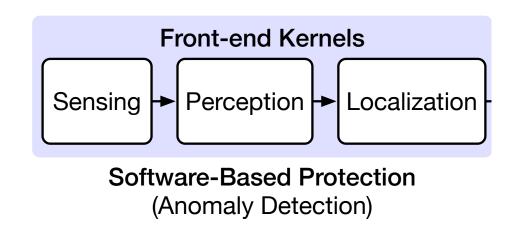

- Platform: Autonomous
 Drone (MAVBench^[2])
- Reliability: soft errors

[2] Boroujerdian et al, MICRO, 2018

Insight: frontend high latency, low vulnerability backend low latency, high vulnerability

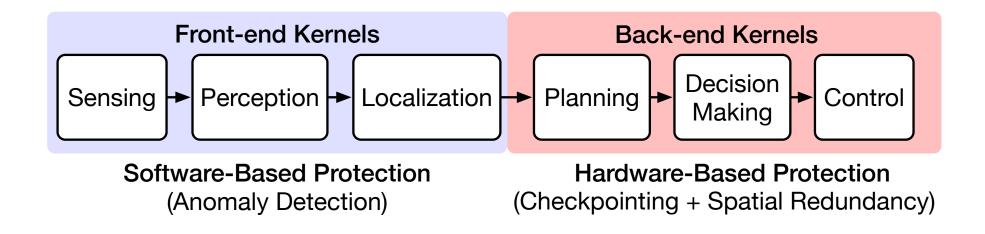
VPP Overview

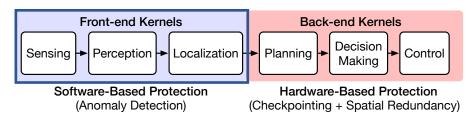
(VPP: <u>V</u>ulnerability-<u>P</u>roportional <u>P</u>rotection)



Vulnerable-Proportional Protection

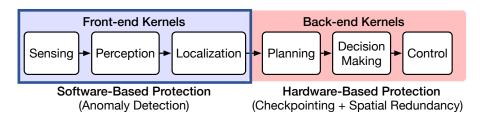
• **Design Principle**: the protection budget, be it spatially or temporally, should be allocated inversely proportionally to kernel inherent resilience


Vulnerable-Proportional Protection


- **Design Principle**: the protection budget, be it spatially or temporally, should be allocated inversely proportionally to kernel inherent resilience
 - Frontend: low vulnerability -> lightweight software-based protection

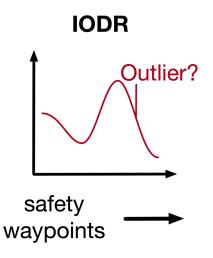
Vulnerable-Proportional Protection

- **Design Principle**: the protection budget, be it spatially or temporally, should be allocated inversely proportionally to kernel inherent resilience
 - Frontend: low vulnerability -> lightweight software-based protection
 - Backend: high vulnerability -> more protection efforts, hardware-based protection



Frontend: Anomaly Detection

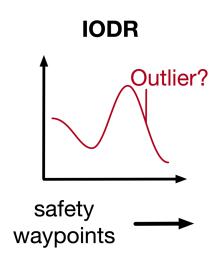
• Frontend Insights:


- Strong temporal consistency of inputs and outputs
- Inherent error-masking and error-attenuation capabilities
- Rare false positive detection

Frontend: Anomaly Detection

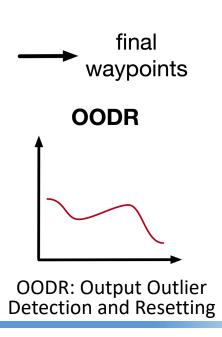
• Frontend Insights:

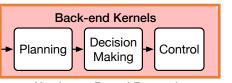
- Strong temporal consistency of inputs and outputs
- Inherent error-masking and error-attenuation capabilities
- Rare false positive detection


IODR: Input Outlier Detection and Resetting

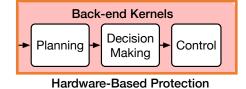
Front-end Kernels Sensing Perception Localization Software-Based Protection (Anomaly Detection) Back-end Kernels Planning Decision Making Control Hardware-Based Protection (Checkpointing + Spatial Redundancy)

Frontend: Anomaly Detection


Frontend Insights:


- Strong temporal consistency of inputs and outputs
- Inherent error-masking and error-attenuation capabilities
- Rare false positive detection

IODR: Input Outlier Detection and Resetting

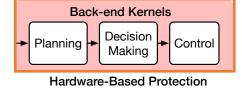

```
void ChangeWp(const VelocitySetInfo& vs_info, float
safety_wp):
{
    double deceleration = 0.0;
    double velocity_set =0.0;
    cond1 = detect(vs_info);
    if (cond1)
    {
        final_wp = change(safety_wp);
    }
    else
    {
        final_wp = change(safety_wp);
    }
}
```


Hardware-Based Protection (Checkpointing + Spatial Redundancy)

- Critical to errors
- Extremely lightweight that do not involve complex computation
- More false positive detection cases

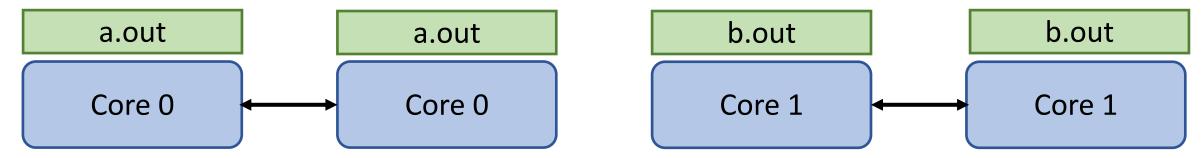
Hardware-Based Protection (Checkpointing + Spatial Redundancy)

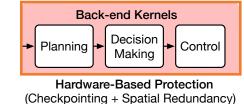
Backend Insights:

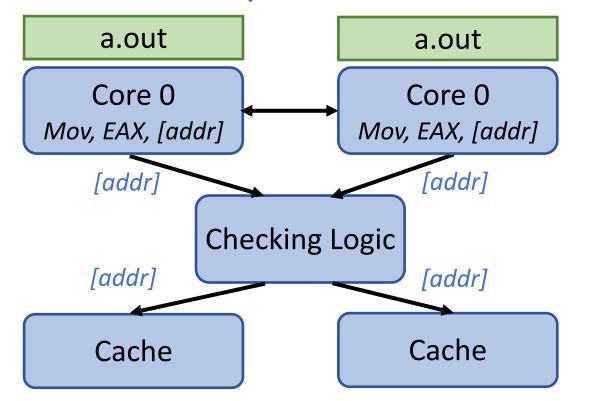

- Critical to errors
- Extremely lightweight that do not involve complex computation
- More false positive detection cases

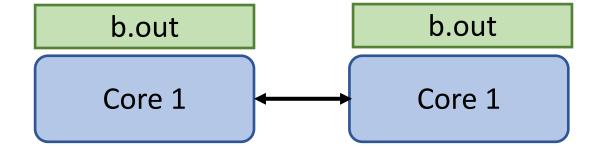
Core 0

Core 1

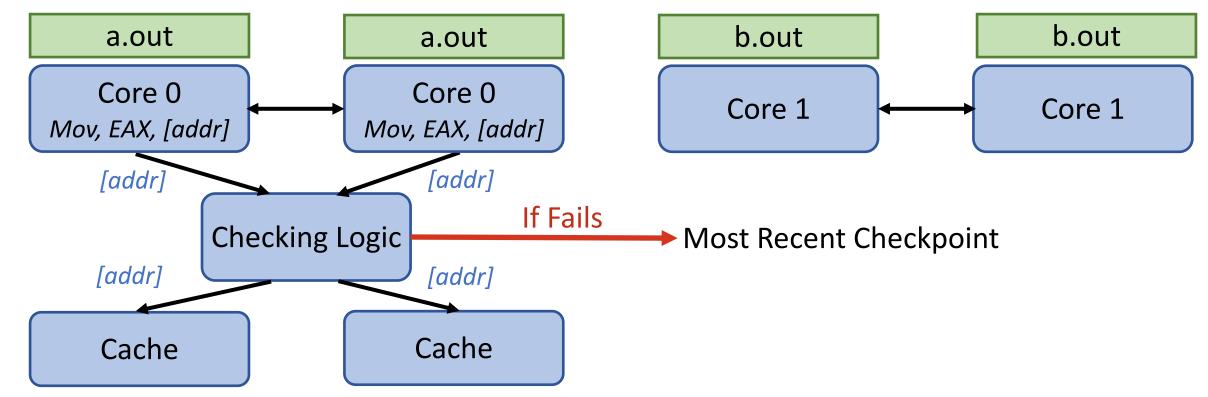

Core 2


Core 3


Hardware-Based Protection (Checkpointing + Spatial Redundancy)


- Critical to errors
- Extremely lightweight that do not involve complex computation
- More false positive detection cases




- Critical to errors
- Extremely lightweight that do not involve complex computation
- More false positive detection cases

- Critical to errors
- Extremely lightweight that do not involve complex computation
- More false positive detection cases

VPP Overview

(VPP: <u>V</u>ulnerability-<u>P</u>roportional <u>P</u>rotection)

Fault Protection Scheme								
Baseline	Baseline No Protection							
Software	Anomaly Detection							
Software	Temporal Redundancy							
Hardware	Modular Redundancy							
пагимаге	Checkpointing							
Adaptiv	e Protection Paradigm (<i>VPP</i>)							
Front-end Software + Back-end Hardware								

Experimental Setup

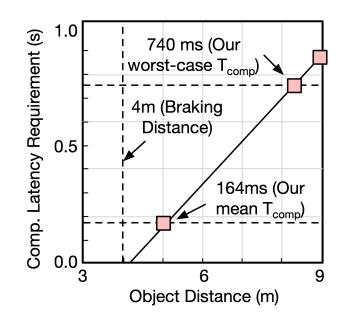
 Platform: Autonomous Vehicle (Autoware^[1])

[1] Kato et al, IEEE Micro, 2015

Ea	llt Protection Scheme No Protection	Resilience
T'a	unt Protection Scheme	Error Propagation
		Rate (%)
Baseline	No Protection	46.5
Software	Anomaly Detection	24.2
Software	Temporal Redundancy	11.7
Hardware	Modular Redundancy	0
Tiaiuwaie	Checkpointing	0
Adaptiv	e Protection Paradigm (<i>VPP</i>)	0
Front-end	Software + Back-end Hardware	U

Experimental Setup

- Platform: Autonomous
 Vehicle (Autoware^[1])
- Reliability: soft errors


[1] Kato et al, IEEE Micro, 2015

<u>Takeaway</u>: VPP <u>improves resilience</u> and <u>reduces error propagation rate</u> by (1) leveraging inherent error-masking capabilities of front-end and (2) strengthening back-end resilience by hardware-based redundancy and checkpointing.

Fault Protection Scheme		Resilience	Latency and	Object Distance			
T a		Error Propagation	1 1	•		O	
		Rate (%)	Latency (ms)				
Baseline	No Protection	46.5	164				
Software	Anomaly Detection	24.2	245	Now	Control		Vehicle Vehicle
Software	Temporal Redundancy	11.7	347	New Event	Commands	Actuator	Starts Fully
Hardware -	Modular Redundancy	0	164	Sensed	Generated	Activated	Reacting Stops
Haluwale	Checkpointing	0	610				
Adaptiv	e Protection Paradigm (<i>VPP</i>)	0	173	T _{comp} = Com	puting Latency T _{data} = C	AN Bus T _{mech} =	Mechanical T _{stop}
Front-end	Software + Back-end Hardware	U	1/3	A	Latency		cy (~19 ms)
				T	T		

<u>Takeaway</u>: VPP reduce end-to-end compute latency overhead.

Fo	Anomaly Detection Temporal Redundancy	Resilience	Latency and Object Distanc			
ra	unt Protection Scheme	Error Propagation	Compute	Object Avoidance		
		Rate (%)	Latency (ms)	Distance (m)		
Baseline	No Protection	46.5	164	5.00		
Software	Anomaly Detection	24.2	245	5.47		
Software	Temporal Redundancy	11.7	347	6.05		
Hardware	Modular Redundancy	0	164	5.00		
liaiuwaie	Checkpointing	0	610	7.56		
Adaptive Protection Paradigm (<i>VPP</i>)		0	173	5.05		
Front-end	Software + Back-end Hardware	U	1/3	3.03		

<u>Takeaway</u>: VPP reduce end-to-end compute latency overhead and reduce obstacle avoidance distance.

Fa	ult Protection Scheme	Resilience	Latency and	l Object Distance	Power Cor	sumption a	and Driving
ra	tuit i iotection scheme	Error Propagation Compute Object Avoidance AI		AD Component	AD Energy		
		Rate (%)	Latency (ms)	Distance (m)	Power $(W)^*$	Change (%)	
Baseline	No Protection	46.5	164	5.00	175	_	
Software -	Anomaly Detection	24.2	245	5.47	175	+33.14	
	Temporal Redundancy	11.7	347	6.05	175	+75.24	
Hardware	Modular Redundancy	0	164	5.00	473	+170.29	
Tiaiuwaie	Checkpointing	0	610	7.56	324	+91.52	
Adaptiv	e Protection Paradigm (<i>VPP</i>)	0	173	5.05	175	+4.09	
Front-end	Software + Back-end Hardware	U	1/3	3.03	1/3	T4.07	

^{*} The vehicle power without autonomous driving (AD) system is 600 W.

Takeaway: VPP reduce autonomous driving compute power and energy overhead.

Fa	ult Protection Scheme	Resilience	Latency and	Object Distance	Power Consumption and Driving Time				
		Error Propagation	Compute	Object Avoidance	AD Component	AD Energy	Driving Time	Revenue	
		Rate (%)	Latency (ms)	Distance (m)	Power $(W)^*$	Change (%)	(hour)	Loss (%)	
Baseline	No Protection	46.5	164	5.00	175	_	7.74	_	
Software	Anomaly Detection	24.2	245	5.47	175	+33.14	7.20	-6.99	
Software	Temporal Redundancy	11.7	347	6.05	175	+75.24	6.62	-14.52	
Hardware	Modular Redundancy	0	164	5.00	473	+170.29	5.59	-27.78	
Haluwaie	Checkpointing	0	610	7.56	324	+91.52	6.42	-17.13	
Adaptive Protection Paradigm (VPP)		0	173	5.05	175	+4.09	7.67	-0.92	
Front-end	Front-end Software + Back-end Hardware		1/3	3.03	173	T 4. 07	7.07	-0.72	

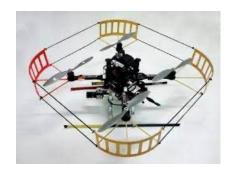
^{*} The vehicle power without autonomous driving (AD) system is 600 W.

<u>Takeaway</u>: VPP reduce autonomous driving compute power and energy overhead, thus enable longer driving time.

Fo	ult Protection Scheme	Resilience	Latency and	l Object Distance	Power Cor	Cost			
T'a	rault rotection scheme		Compute Object Avoidance A		AD Component	AD Energy	Driving Time	Revenue	Extra Dollar
		Rate (%)	Latency (ms)	Distance (m)	Power $(W)^*$	Change (%)	(hour)	Loss (%)	Cost
Baseline	No Protection	46.5	164	5.00	175	_	7.74	_	_
Software	Anomaly Detection	24.2	245	5.47	175	+33.14	7.20	-6.99	negligible
Software	Temporal Redundancy	11.7	347	6.05	175	+75.24	6.62	-14.52	negligible
Hardware	Modular Redundancy	0	164	5.00	473	+170.29	5.59	-27.78	(CPU + GPU)×2
Haluwaie	Checkpointing	0	610	7.56	324	+91.52	6.42	-17.13	(CPU + GPU)×1
Adaptive Protection Paradigm (<i>VPP</i>)		0	173	5.05	175	+4.09	7.67	-0.92	negligible
Front-end	Front-end Software + Back-end Hardware		1/3	3.03	1/3	14.07	7.07	0.72	negngible

The vehicle power without autonomous driving (AD) system is 600 W.

<u>Takeaway</u>: VPP reduces compute latency, energy and system overhead by taking advantage of (1) low cost and false-positive detection in front-end and (2) low latency in back-end. Conventional "one-size-fits-all" techniques are limited by tradeoffs in resilience and overhead.


Evaluation – Autonomous Drone

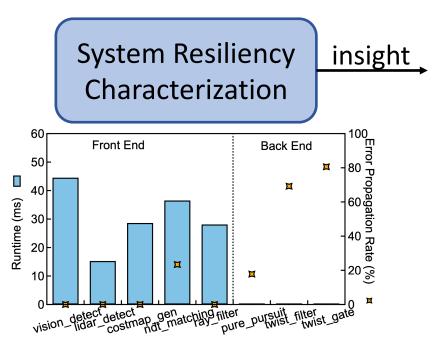
For	Fault Protection Scheme		Latency	and Flight Ti	ime	Power C	Cost			
Tat			Compute	Avg. Flight	Mission	Compute	Mission	Num. of	Endurance	Extra Dollar
		Rate (%)	Latency (ms)	Velocity (m/s)	Time (s)	Power (W)	Energy (kJ)	Missions	Reduction (%)	Cost
Baseline	No Protection	12.20	871	2.79	107.53	15	60.09	5.62	_	_
Software	Anomaly Detection	6.44	1201	2.51	119.52	15	66.79	5.05	-10.04	negligible
Software	Temporal Redundancy	3.02	1924	2.14	140.18	15	78.34	4.31	-23.30	negligible
Hardware	Modular Redundancy	0	871	2.74	109.49	45	63.13	5.34	-3.79	TX2×2
Tiaiuwaie	Checkpointing	0	3458	1.75	171.43	30	96.76	3.49	-37.90	TX2×1
Adaptive Protection Design Paradigm		0	897	2.77	108.30	15	60.52	5.58	-0.72	negligible
Frontend S	Frontend Software + Backend Hardware		697	2.77	100.30	15	00.32	3.38	-0.72	negngible

Experimental Setup

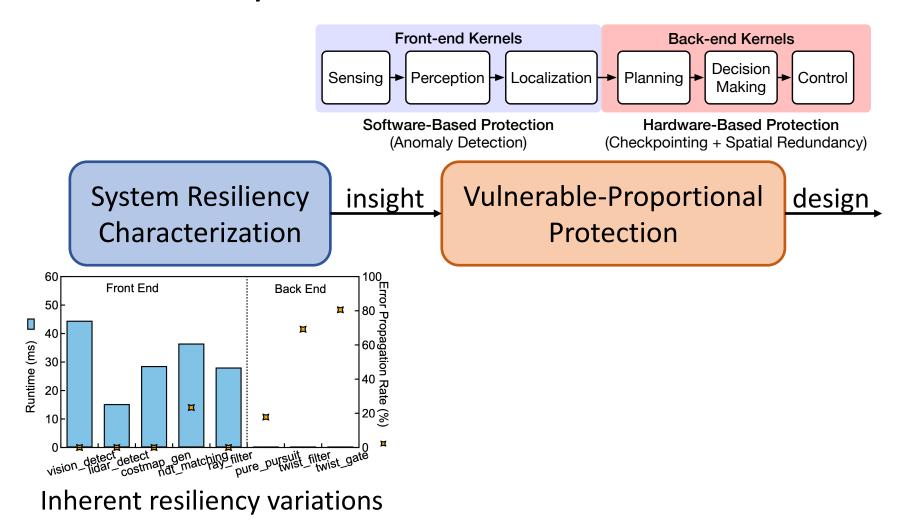
- Platform: Autonomous Drone (MAVBench^[2])
- Reliability: soft errors

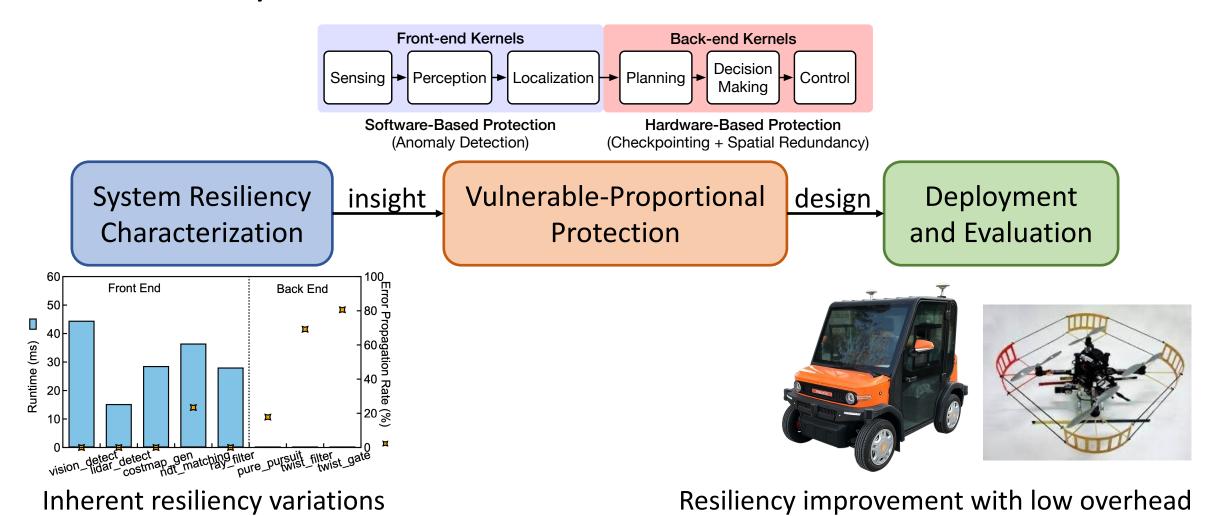
[2] Boroujerdian et al, MICRO, 2018

Evaluation – Autonomous Drone


For	Fault Protection Scheme		Latency	and Flight Ti	ime	Power C	Cost			
Tat			Compute	Avg. Flight	Mission	Compute	Mission	Num. of	Endurance	Extra Dollar
		Rate (%)	Latency (ms)	Velocity (m/s)	Time (s)	Power (W)	Energy (kJ)	Missions	Reduction (%)	Cost
Baseline	No Protection	12.20	871	2.79	107.53	15	60.09	5.62	_	_
Software	Anomaly Detection	6.44	1201	2.51	119.52	15	66.79	5.05	-10.04	negligible
Software	Temporal Redundancy	3.02	1924	2.14	140.18	15	78.34	4.31	-23.30	negligible
Hardware	Modular Redundancy	0	871	2.74	109.49	45	63.13	5.34	-3.79	TX2×2
Hardware	Checkpointing	0	3458	1.75	171.43	30	96.76	3.49	-37.90	TX2×1
Adaptive Protection Design Paradigm		0	897	2.77	108.30	15	60.52	5.58	-0.72	negligible
Frontend S	Software + Backend Hardware		077	2.77	100.50	13	00.32	3.30	0.72	negngible

Takeaway: For small form factor autonomous machines (e.g., drones), extra compute latency and payload weight brought by fault protection schemes impact drone safe flight velocity, further impacting end-to-end system mission time, mission energy, and flight endurance.


Evaluation – Autonomous Drone


For	Fault Protection Scheme		Latency	and Flight Ti	ime	Power C	Cost			
Tat			Compute	Avg. Flight	Mission	Compute	Mission	Num. of	Endurance	Extra Dollar
		Rate (%)	Latency (ms)	Velocity (m/s)	Time (s)	Power (W)	Energy (kJ)	Missions	Reduction (%)	Cost
Baseline	No Protection	12.20	871	2.79	107.53	15	60.09	5.62	_	_
Software	Anomaly Detection	6.44	1201	2.51	119.52	15	66.79	5.05	-10.04	negligible
Software	Temporal Redundancy	3.02	1924	2.14	140.18	15	78.34	4.31	-23.30	negligible
Hardware	Modular Redundancy	0	871	2.74	109.49	45	63.13	5.34	-3.79	TX2×2
Hardware	Checkpointing	0	3458	1.75	171.43	30	96.76	3.49	-37.90	TX2×1
Adaptive Protection Design Paradigm		0	897	2.77	108.30	15	60.52	5.58	-0.72	negligible
Frontend S	Software + Backend Hardware		077	2.77	100.50	13	00.32	3.30	0.72	negngible

<u>Takeaway</u>: VPP generalizes well to small-scale drone system <u>with improved resilience and negligible overhead</u>. By contrast, the large overhead from conventional "one-size-fits-all" protection results in severer performance degradation in SWaP-constrained systems.

Inherent resiliency variations

Reliability

Goal: Improve operational resiliency under faults without degrading performance and efficiency (Vulnerable-Proportional Protection)

Autonomous Machines

Performance

Performance-Efficiency-Reliability Co-Optimization

Efficiency

Goal: Improve task accuracy (Autonomy Algorithms)

Goal: Improve data and compute efficiency (Hardware Architecture)

VPP: The Vulnerability-Proportional Protection Paradigm Towards Reliable Autonomous Machines

Zishen Wan^{1*}, Yiming Gan^{2*}, Bo Yu³, Arijit Raychowdhury¹, Yuhao Zhu²

¹Georgia Institute of Technology ²University of Rochester ³PerceptIn (*Equal Contributions)

⊠ zishenwan@gatech.edu, ygan10@cs.rochester.edu

DOSSA-5 @ISCA 2023