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1 INTRODUCTION
The next ubiquitous computing platform, after personal computers
and smartphones, is likely one of the autonomous natures, such
as drones, robots, and self-driving cars, which have moved from
mere lab concepts to permeating almost every aspect of our soci-
ety [16, 20, 25]. Behind the proliferation of autonomous machines
is the critical need to ensure reliability [7, 22–24]. Almost every
vendor, be it in the software, hardware, or systems segment, has to
conform to functional safety standards when shipping products for
automotives.

Today’s resiliency solutions to autonomous machines, however,
all make fundamental trade-offs between resiliency and cost, which
manifests as high overhead in performance, energy, and chip area.
For instance, hardware modular redundancy provides high safety
but more than doubles the area and energy cost [1]. The reason is
that today’s solutions are of the “one-size-fits-all” nature: they use
the same protection scheme throughout the entire computing stack
of autonomous machines. As a result, they have to accommodate
the least robust component, leading to a high protection overhead.

The insight of this paper is that for a resiliency solution to pro-
vide high protection coverage while introducing little cost, we must
exploit the inherent robustness variations in the domain-specific
autonomous machine computing. In particular, we show that the
different autonomous machine kernels differ significantly in their
inherent robustness and performance. Building on top of that, we
propose a Vulnerable-Proportional Protection (VPP) design paradigm,
in which the protection budget, be it spatially (e.g., modular re-
dundancy) or temporally (e.g., re-execution), should be inversely
proportional to the inherent robustness of a task in the autonomous
machine system. In stark contrast to the existing “one-size-fits-all”
strategy, VPP wisely allocates the protection budget, thus achieving
the same protection coverage with little overhead, which provides a
blueprint design paradigm towards reliable autonomous machines.

2 DESIGN LANDSCAPE OF RESILIENT
AUTONOMOUS MACHINES

Different protection techniques exhibit distinct performance, effi-
ciency, and resilience impact on autonomousmachines.We compare
four representative software and hardware protection techniques
and reveal that conventional “one-size-fits-all” approaches are lim-
ited by the tradeoff in overhead and resilience improvement (Fig. 1).

Various sources of errors can affect autonomous machines, in-
cluding soft errors, adversarial attacks, and software bugs [24, 29].
We consider hardware bit-flips (i.e., soft error) in this paper. The
exacerbating impact of soft errors has been recently emphasized by
industrial studies [5, 9], where radiations and temperature change
can result in random bit flip in compute units and memory cells.
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Fig. 1: Design landscape of different software and hardware-based
protection techniques for resilient autonomous machines. Our pro-
posed Vulnerable-Proportional Protection (VPP) design paradigm
co-optimizes performance, energy efficiency, and resilience.

Software-based protection scheme usually exhibits advantages
in lower cost and power overhead, but suffer from compute latency
overhead and non-completely recovery from faults. For example,
anomaly detection [7, 10] can identify abnormal behaviors but may
incur high latency overhead due to re-execution and cannot fully
mitigate fault impact due to false-positive detection in corner cases.
Temporal redundancy [11] executes the codemore than once, which
can alleviate the threat of silent data corruption but typically incurs
large overhead due to the redundant sequential executions.

Hardware-based protection scheme usually exhibits advantages
in error mitigation but incurs large power overheads and extra
cost. For example, modular redundancy [1, 4] makes copies of the
processing logic and is effective in fault detection with negligible
latency impact while incurring considerable energy and silicon cost.
Checkpointing [3] periodically stores a fault-free copy of the pro-
cessor state with a recovery mechanism under failure, but it brings
large runtime overhead due to the store and retrieve procedure that
may violate the real-time nature of autonomous machines (Sec. 5).

Conventional “one-size-fits-all” hardware or software-based pro-
tection is limited by the fundamental trade-off between overhead
and resilience in the design space of resilient autonomous machines.
As shown in Fig. 1, VPP overcomes this trade-off by concurrently
optimizing performance-efficiency-resilience and pushes the land-
scape frontier to the top-left by leveraging the insight from inherent
autonomous machine robustness and performance variations.

3 SYSTEM CHARACTERIZATION STUDY
This section characterizes the performance and resilience of dif-
ferent modules in autonomous machines. Autonomous machine
computing differentiates from traditional systems in dataflow, soft-
ware pipeline, compute substrate, and underlying architecture [18].
Evaluated on representative autonomous vehicles (Autoware [19])
and drones (MAVBench [2]), we reveal the inherent robustness and
performance variations of autonomous machine systems (Fig. 2).

The front-end of autonomous machines (sensing, perception,
localization) usually has higher resilience but with higher latency
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Fig. 2: The performance and resilience trade-offs of autonomous
vehicles (Autoware) and drones (MAVBench). X-axis represents al-
gorithm nodes. The front-end exhibits high runtime and high re-
silience, while the back-end exhibits low runtime and low resilience.

and energy consumption. Front-end modules deal with sensor data
and provide semantic results, which is inherently computationally
intensive and contributes to the largest latency in autonomous
machines [6, 8, 15, 21, 26]. Front-end modules are resilient to errors
due to redundant surrounding information, multiple sensor fusion,
and inherent robustness of deep learning models in perception
tasks.

The back-end of autonomousmachines (planning, decision-making,
control) is more vulnerable to errors but with lower latency. Back-
end modules plan the paths and general control commands, which
are computationally light [2, 17, 27]. However, back-end modules
directly control the actuators, so faults have a higher probability of
propagating the system and influencing the agent’s behavior.

4 VPP DESIGN METHODOLOGY
In this section, leveraging the insights of inherent resilience and
latency variations of front-end and back-end kernels (Sec. 3), we pro-
pose an adaptive and cost-effective protection design paradigm for
autonomous machine systems, achieving high operation resilience
and safety with negligible latency and energy overheads.

Design Paradigm. The key principle of our adaptive protection
is Vulnerable-Proportional Protection (VPP) - the protection budget
is allocated proportionally to the inherent resilience of autonomous
machine kernels, with more protection efforts on vulnerable ker-
nels while less on robust kernels. Specifically, we propose to apply
software-based protection on front-end kernels and hardware-based
protection on back-end kernels (Fig. 3), inspired by the insights
that the front-end is resilient while the back-end is vulnerable.

Front-end - Software-Based Protection. We use anomaly
detection in autonomous machine front-end sensing-perception-
localization kernels. We leverage three insights: First, autonomous
agents typically generate outputs with strong temporal consistency,
thus errors manifested as outliers that break the consistency can
be easily detected. Second, front-end kernels have inherent error-
masking and error-attenuation capabilities through redundant in-
formation and operations such as low-pass filtering and operator
union. Third, front-end kernels exhibit rare false positive detection
with anomaly detection technique, thus significantly reducing the
node re-execution overhead and protection failure cases.

Back-end - Hardware-Based Protection. We use modular
redundancy and checkpointing in autonomous machine back-end
planning-control kernels. We leverage three insights: First, back-
end kernels are very critical to errors, motivating us to strengthen
protection with hardware-based methods. Second, the back-end

Perception Localization Planning ControlSensing Decision
Making

Front-end Kernels Back-end Kernels
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(Anomaly Detection) (Checkpointing + Spatial Redundancy)
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Fig. 3: Adaptive fault protection design paradigm, Vulnerable-
Proportional Protection (VPP), with software-based technique for
front-end kernels and hardware-based technique for back-end ker-
nels, based on the energy proportional protection design principle.

kernels are extremely lightweight, thus the overhead of redundancy
would be small. Third, more false positive detection cases are from
the back-end in software protection, resulting in potential protec-
tion failure and the need to strengthen from hardware protection.

Particularly, we propose a selective redundancy and checkpoint-
ing approach. We only make redundancy copy for the core running
back-end modules. In Robot Operating System, we periodically
queue the message and the faulty node can directly re-execute
before the node communication if faults are detected. This check-
pointing method eliminates the large latency overhead from con-
ventional architectural checkpointing/restore methods that violate
the real-time nature of autonomous machines.

5 EVALUATION RESULTS
In this section, we evaluate VPP on autonomous machines, and
demonstrate that VPP can achieve improved resilience with lower
latency and energy overhead, compared with conventional “one-
size-fits-all” techniques. Tab. 1 evaluates the end-to-end Autoware
autonomous vehicle system from our concrete vehicle testbed [28].

Table 1: Comparison of proposed protection design VPPwith various
software and hardware protection schemes, evaluated on end-to-end
autonomous driving (AD) performance, efficiency, and resilience.

Protection
Scheme

Performance Power and Operation Time Resilience
Latency
(𝑚𝑠)

Object
Dist. (𝑚)

AD Power
(𝑊 )*

AD Energy
Change (%)

Driving Time
(hour)

Error Propag.
Rate (%)

No Protection 164 5.00 175 – 7.74 46.5

SW AD 245 5.47 175 +33.14 7.20 24.2
TR 347 6.05 175 +75.24 6.62 11.7

HW MR 164 5.00 473 +170.29 5.59 0
CHKP 610 7.56 324 +91.52 6.42 0

VPP (Ours) 173 5.05 175 +4.09 7.67 0
* The vehicle power without autonomous driving (AD) system is 600 W.

The proposed protection design VPP improves autonomous ma-
chine resilience. VPP greatly reduces the error propagation rate to 0
by leveraging the inherent error-masking capabilities of front-end
kernels and strengthening back-end kernel resilience by hardware-
based selected modular redundancy and checkpointing scheme.
This level of resilience can satisfy ASIL-D safety criteria.

The proposed protection design VPP incurs low overhead. VPP
reduces latency, energy, and system performance overhead by tak-
ing advantage of low cost and false-positive detection rate in front-
end and low compute latency in back-end of autonomous machines.
VPP only brings 5.49% more latency and 4.09% more energy con-
sumption. By contrast, conventional “one-size-fits-all” techniques
are limited by tradeoffs in resilience and overhead with reduced
driving time duration and worse object avoidance distance.

We have similar observations on drones where VPP general-
izes well to small-scale drone system, based on the MAVBench
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testbed [2] and drone characterization model [12–14], with im-
proved resilience and negligible overhead. By contrast, the large
overhead from conventional “one-size-fits-all” protection techniques
result in severe performance degradation in resource-constrained
drone systems.

6 CONCLUSION
Reliability and safety are critical for autonomous machines. For the
first time, we systematically analyze the design landscape of re-
silient autonomous machines and reveal the inherent performance-
resilience variations. We propose an adaptive protection paradigm
VPP and demonstrate its cost-effectiveness on autonomous vehi-
cle and drone systems. We envision the observations and designs
will further spur innovations in intelligent swarms and resilient
domain-specific solutions for autonomous machine computing.
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