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Abstract—An increasing number of researchers are finding use for
nth-order gradient computations for a wide variety of applications,
including graphics, meta-learning (MAML), scientific computing, and
most recently, implicit neural representations (INRs). Recent work
shows that the gradient of an INR can be used to edit the data it
represents directly without needing to convert it back to a discrete
representation. However, given a function represented as a computation
graph, traditional architectures face challenges in efficiently computing
its nth-order gradient due to the higher demand for computing power
and higher complexity in data movement. This makes it a promising
target for FPGA acceleration. In this work, we introduce INR-Arch,
a framework that transforms the computation graph of an nth-order
gradient into a hardware-optimized dataflow architecture. We address
this problem in two phases. First, we design a dataflow architecture that
uses FIFO streams and an optimized computation kernel library, ensuring
high memory efficiency and parallel computation. Second, we propose a
compiler that extracts and optimizes computation graphs, automatically
configures hardware parameters such as latency and stream depths to
optimize throughput, while ensuring deadlock-free operation, and outputs
High-Level Synthesis (HLS) code for FPGA implementation. We utilize
INR editing as our benchmark, presenting results that demonstrate
1.8–4.8× and 1.5–3.6× speedup compared to CPU and GPU baselines
respectively. Furthermore, we obtain 3.1–8.9× and 1.7–4.3× lower memory
usage, and 1.7–11.3× and 5.5–32.8× lower energy-delay product. Our
framework will be made open-source and available on GitHub.**

1. INTRODUCTION

Implicit neural representations (INRs) are enjoying great popularity
for a variety of use cases, including 3D neural rendering and styl-
ization in augmented and virtual reality (AR/VR) [1, 2], application-
agnostic data representation and compression [3, 4, 5], and super-
resolution and inpainting for data across various modalities, such as
images and videos [3, 6]. A core strength of INRs lies in their capacity
for data compression. As an effective, high-fidelity encoding approach
for diverse data types, INRs represent a promising path to efficient
data management [4, 5].

However, it is critical to recognize the implications of such compact
data encoding for computational hardware requirements. Considering
the emerging paradigm where memory costs more than computation,
a memory-efficient solution can provide high energy and area effi-
ciency. Therefore, it is crucial to develop methods to perform rapid
gradient computations without relying on large, memory-intensive
hardware.

Meanwhile, hardware designers are embracing dataflow archi-
tectures to achieve low latency through overlapping computation
kernels within their designs. Streaming in dataflow designs allows for
individual processes to work at a much finer granularity than input
and output arrays; instead, they can incrementally produce partial
outputs or consume partial inputs through first-in-first-out (FIFO)
streams of data. When large numbers of these processes are combined
in this way, massive latency savings can be achieved effectively by
exploiting the throughput of each process.

*Equal contribution.
**https://anonymous.4open.science/r/inr-arch-BD74

Motivated by the need for efficient INR computation and editing,
we propose INR-Arch with emphasis on a dataflow architecture and
specialized compiler. Our key contributions are as follows:
1 Dataflow Architecture: We propose a dataflow architecture

based on FIFO-based array streams and a library of optimized
computation kernels that operate on array streams. This approach
allows for increased memory efficacy and overlapping compu-
tations.

2 Computation Graph Extraction & Optimization: We propose
an automated method to extract the computation graph of
the gradient of a PyTorch tensor, along with several lossless
optimization techniques to simplify the resulting graph.

3 Deadlock Analysis and Optimization: We propose a novel
technique to quickly and accurately determine whether a given
set of FIFO depths will cause a dataflow design to deadlock.

4 FIFO Depth Analysis and Optimization: We extend the
deadlock analysis to compute latency estimates based on a set of
FIFO depths, and we propose a procedure to quickly determine
a reduced set of FIFO depths that lowers memory usage without
impacting performance.

5 Code Generation: We propose a compiler that uses the pro-
cessed computation graph and a set of FIFO depths to generate
a dataflow architecture that executes the graph in hardware.

6 Power, Latency, and Memory Improvements vs. CPU &
GPU: We evaluate INR-Arch applied to INR editing targeting
an FPGA platform and compare its latency, memory usage, and
energy-delay product against CPU and GPU baselines.

2. BACKGROUND AND MOTIVATION

A. High-Order Gradients

Popular machine learning frameworks such as PyTorch and Tensor-
Flow are capable of automatically computing arbitrary-order gradi-
ents of a given function through reverse mode automatic differentia-
tion [7]. This involves first representing the function as a computation
graph, where each node represents a primitive operation such as
elementwise add, transpose, or matrix multiply. The framework then
recursively applies the chain rule of differentiation on the graph
to obtain a new computation graph, which represents a function
whose output is the gradient of the original function. This automatic
differentiation process can be repeated recursively to obtain second-
and higher-order gradients of a function.

Higher-order gradients play a crucial role in various fields, such
as scientific computing, computer graphics, and deep learning. For
instance, in scientific computing, higher-order gradients are essential
for accurately modeling complex problems in areas such as fluid
dynamics [8].

Similarly, in computer graphics, higher-order gradients are tradi-
tionally used to render images with high fidelity and realism. More
recently, differentiable rendering techniques [9] have been developed
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Fig. 1: A visual overview of A) Implicit Neural Representations
(INRs), and B) INR Editing using the INSP-Net architecture [12].

to work along side deep learning to incorporate graphics rendering
in the end-to-end training pipeline. Neural radiance fields (NeRF) [1]
are a popular example of differentiable rending for deep learning.

Moreover, the use of higher-order gradients is becoming increas-
ingly popular in the field of deep learning. Higher-order gradients
are used in the traditional training of models as well as for meta-
learning such as model-agnostic meta-learning (MAML) [10] and
hyperparameter optimization [11]. Additionally, higher-order gradi-
ents have been shown to be an effective tool for processing implicit
neural representations (INRs) to apply arbitrarily learnable data
transformations efficiently.

B. Implicit Neural Representations

Implicit neural representations (INRs) are a way to represent
individual data points as entire neural networks, as shown in Fig. 1A.
Given a single data sample, such as an image, audio file, 3-D model,
etc., and a suitable neural network architecture [3], the data sample
can be encoded as a set of weights and biases for the neural network
and later decoded, i.e., reconstructed, from the weights.

Encoding an INR involves training the chosen neural network
architecture to predict output coordinates from input coordinates
within a single data sample, effectively overfitting the neural network
to this one sample. For instance, to encode an image file, we
first consider the image to be a “training dataset” for the neural
network consisting of input (x, y) 2-D coordinate pairs mapped to 3-
D outputs, representing the red, green, and blue (RGB) colors of
the pixel at the input (x, y) coordinates within the image. After
training the neural network to predict these mappings, the neural
network weights and biases can themselves be considered an implicit
representation of the image in weight-space, i.e., an INR.

It follows that decoding an INR involves plugging in discrete input
coordinates into a neural network with weights and biases given by
the INR to obtain output coordinates; in the case of images, this
means plugging in (x, y) coordinate values and obtaining RGB color
values in pixel-space.

INRs are useful for several purposes. First, since the inputs and
outputs of the INR are continuous coordinate values, the INR can
be treated as a continuous representation of a discrete input sample,
allowing for super-resolution beyond that of the input sample. For
instance, given an image encoded as an INR, during decoding, we
can plug in non-pixel-aligned input coordinates and obtain output
colors corresponding to points between pixels of the original image,
effectively providing unlimited image resolution. Second, INRs can
be used as an effective compression scheme, as the weights in an INR
can require less space than the original data while still maintaining
high fidelity [4, 5, 13]. Third, INRs are a universal representation
of any type of data that can be represented as a mapping from
input coordinates to output coordinates, making them versatile for
compression and super-resolution for a wide variety of data formats.

C. INR Editing

A recent work by Xu et al. [12] demonstrates that for images
encoded as INRs, we can operate directly on the weight-space repre-
sentation of the image to obtain another INR, using a different neural
network architecture dubbed INSP-Net (shown in Fig. 1B), whose
decoding corresponds to a desired signal processing transformation
of the original image in pixel-space, such as blurring, de-noising,
etc. In other words, if we want to edit an image encoded as an
INR by, e.g., blurring it, we do not have to decode the INR to
pixel-space, apply a blur filter, then re-encode to another INR. By
computing the model output and up to the nth-order gradients of the
output as input features for a trainable MLP, specific signal processing
tasks can be achieved on a distribution of data. However, computing
higher-order gradients needed for editing is complex, resulting in
exponentially more complex computation graphs as the number of
gradients increases. This provides a key motivation for hardware
acceleration of the exact gradient computation.

3. PROPOSED METHODOLOGY

With this motivation in mind, we propose INR-Arch, a dataflow
architecture and compiler for arbitrary-order gradient computations in
INR processing. We first discuss the INR-Arch dataflow architecture,
followed by our compiler flow that translates gradient computations
in PyTorch to a synthesizable and performant HLS design.

A. Dataflow Architecture

1) Challenges
INR editing presents several significant challenges in translating

the computation graph to efficient hardware, which we outline below:
• Many Intermediate Results with Redundant Data Movement:

The conventional method of buffering intermediate results into
scratchpad memory becomes infeasible due to the large compu-
tation graph size and the required batch size for effective INR
usage. Allocating a buffer for each computation kernel in the
graph could dramatically increase memory requirements. Specif-
ically, INR model inference usually involves sampling multiple
coordinates simultaneously to reconstruct data points, like pixel
locations in an image. Consequently, the models demand an input
batch size dimension, which propagates through all computation
kernels. If the batch size is substantial, such as 64, it can inflate
the memory requirement of scratchpad memories by 64 times.
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Fig. 2: An overview of the INR-Arch framework for end-to-end hardware acceleration for INR editing based on the INSP-Net [12] architecture.
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• Different Computation Kernels with Different Computation
Patterns: Inherent in the INR model is the use of diverse compu-
tation kernels, each exhibiting unique computation patterns. The
diverse nature of these kernels means they may process data
in distinct ways—some might favor sequential processing, while
others may benefit from parallelization. This variance introduces

a layer of complexity in optimizing the model as a whole and
developing accelerated computation kernels. Effective use of these
kernels requires careful coordination and optimal resource alloca-
tion to balance the computational load and data movement while
minimizing area and latency requirements.

2) Solution

To address these challenges, we propose a dataflow architecture
for mapping INR editing models to hardware. A visual overview is
shown in Fig. 3.

Our dataflow architecture is based on two key components:
streaming-based data movement using a proposed array stream data
structure and a library of computational kernels designed to operate
on array streams.

Streams address the issue of “Many Intermediate Results with
Redundant Data Movement.” They are conceptualized and phys-
ically implemented as fixed-size First-In-First-Out (FIFO) streams
with a user-definable depth. Our unique variant, called “array
streams,” includes additional metadata about array shape, stream
sizes, and block size of represented data, thereby facilitating the struc-
tured streaming of intermediate results. Array streams are designed
to stream data in row-major order.

This model is advantageous as it allows inputs, outputs, and
intermediate activations to be stored as streams rather than relying on
buffers such as scratchpad memory. The streams only need to store a
fraction of the elements for any given input, output, or intermediate
activation, resulting in a memory-efficient implementation compared
to traditional buffered computations in CPUs and GPUs. The quantity
of data that can be accommodated in the hardware is determined
by the FIFO depth. Generally, we find that the FIFO depth can be
significantly smaller than the total elements represented by the array
stream, leading to substantial memory savings as outlined in Sec. 4.4.

Computational kernels, or compute units designed to interact with
data streams, benefit from the array stream’s unified interface. Each
kernel is specialized to read and write data in its unique pattern.
For instance, some kernels can instantly read and write computed
data without buffering (e.g., elementwise add), while others may
necessitate buffering (e.g., matrix multiply / MM) or access to array
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shape data (e.g., dimension select). Kernels are also categorized by
their input-output degree: N:1, 1:1, and 1:N. INR-Arch incorporates
a subset of kernels necessary for supporting operations within INR-
specific autograd computation graphs (refer to the source code for
further exploration of all kernels).

When integrating array streams and computation kernels, the
proposed dataflow architecture adheres to the “one-producer, one-
consumer” principle. This necessitates that N:1 and 1:1 kernels be
capable of mapping their outputs to inputs of downstream computa-
tion kernels while following the “one-producer, one-consumer” rule.
To achieve this, a special 1:N operation known as “copy stream” is
used to multicast a single input stream’s elements to multiple output
streams in a round-robin fashion.

The bottom panel in Fig. 3 shows an example of a mapped dataflow
architecture for a small computation graph. In general, our work
applies this dataflow architecture to larger extracted computation
graphs, mapping inputs, outputs, and intermediate activations to array
streams and operations to computation kernels.

B. Compiler Methodology

1) Challenges
The dataflow architecture provides a solid foundation for an

efficient accelerator, but mapping a gradient computation graph onto
this structure presents its own challenges:
• Complex Computation Graphs with Redundant Operations:

In applying the INSP-Net approach, we build computation graphs
by calculating higher-order gradients of the base INR model
being edited. This process causes the computation graphs to grow
exponentially with each gradient order. Both the base model and
the higher-order composition graph share the same computations
and redundant sub-graphs. Furthermore, there is an increase in
redundant operations within these computation graphs, along with
patterns of operations that can cancel each other out, leading to
higher redundancy.

• Susceptibility to Deadlock: Due to the differing computation
patterns of different computation kernels, the generated dataflow
architecture is susceptible to deadlock unless FIFO buffers between
kernels are carefully provisioned. It is critical to ensure that the
generated design will not deadlock, but deadlocks are usually
difficult to detect without a full cycle-level simulation, which can
take hours or even days for the complex dataflow designs generated
by our framework.

• Latency or Memory Waste from Improper FIFO Buffer Sizing:
Deadlock-free operation is a necessary but not sufficient criterion
for an efficient accelerator. Even when there is no deadlock,
too-small FIFO depths can degrade performance so the resulting
latency is multiple times slower than peak performance. On the
other hand, too-large FIFO depths can consume multiple times the
memory resources of an equally performant smaller design.

• Complexity, Correctness, and Runtime Overhead of HLS Code:
Code generation can be an error-prone process. It is important to
ensure that the generated code faithfully reproduces the gradient
computation carried out by PyTorch while incurring minimal
runtime overhead. The generated code should be as simple as
possible to aid debugging and minimize the chance of errors.
We propose a four-step compilation process (represented in Fig. 2

as steps 2–5) to address each of these challenges.

2) Computation Graph Extraction & Optimization
The first step of our proposed process is to obtain the computation

graph of the higher-order gradient of a desired function expressed as

Computation Graph
Extraction + Optimization

Base

d/dx

d/dx

Combined∇

Base INR1st Order

2nd Order Combined

∇

Fig. 4: Visualization of the computation graph merging optimization.
Similar computations are indicated with identical colors to represent
their presence both within and across graphs. The merging of these
graphs effectively minimizes redundant computations.

a series of PyTorch operations. We take advantage of the computa-
tion graph that is automatically built by PyTorch for its automatic
differentiation process (“autograd”) as described in Sec. 2.1.

Given a list of PyTorch tensors representing the gradient outputs,
we perform a depth-first traversal through the autograd graph of each
of the tensors. We construct a combined computation graph from all
the output tensors and apply several optimization passes to eliminate
redundancy in the graph.

First, since the gradient introduces repeated subsections of the
graph due to the chain rule of differentiation, we de-duplicate any
common subtrees within the raw graph, indicated by the color-coded
sections of Fig. 4. As a result of this de-duplication, the output tensors
across multiple gradient orders share most of their computation: for
instance, the outputs for the 1st-order gradient are contained entirely
within the computation graph of the 2nd-order gradient, with the
exception of a few nodes at the end.

Second, the graph can contain “Permute” nodes, which perform
an arbitrary permutation of the axes of the input tensor. However,
in many cases, these “Permute” nodes simply swap the axes of a
two-dimensional input, which is the same as transposing the input.
Therefore, when we identify this special case anywhere in the graph,
we replace the “Permute” node with a “T” (transpose) node.

Third, since transposing a tensor twice is the same as not modifying
it at all, we look for any contiguous sequences of “T” nodes in the
graph and remove all matched pairs, leaving zero or one “T” node
in place of each sequence.

Finally, when multiple “T” nodes have the same input, we choose
one of them to be the canonical node, delete the others, and re-route
their outputs to come from the canonical node.

These optimizations massively simplify the graph. De-duplication
greatly shrinks the graph size, making it feasible to synthesize
accelerators for larger gradient computations. “T” node optimizations
help reduce latency significantly, since transposing a tensor requires
buffering the entire tensor and thus creates a bottleneck in the
dataflow.
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Fig. 5: An example of a computation graph that causes deadlock with
default FIFO sizing for any non-trivial input. The root cause is the
contention between the “Mm” which buffers elements with a delay
before writing out data and “Cos” which writes out data every cycle.

3) Deadlock Analysis
Given an optimized computation graph, we must determine suitable

buffer sizes for the FIFO streams connecting each kernel to avoid a
deadlock in the overall design. To clarify how this issue arises, Fig 5
depicts an example computation graph that is susceptible to deadlock.

Two nodes, Mm and Cos, use the same input and feed the same
output, but Cos operates in a fully streaming manner—producing each
output element as soon as each input element is available—whereas
Mm must fully buffer all the elements from this input before it can
produce any output elements. The source node distributes outputs to
Mm and Cos in a round-robin fashion, first writing one element to
Mm, then the same element to Cos, repeating until all elements are
written to both streams. Similarly, the Mul node reads input elements
round-robin, reading one element from Mm, then one element from
Cos, repeating until both streams are exhausted.

If all FIFOs use their default depth of 2 and there are more than five
outputs from the source node, this computation graph is guaranteed
to cause a deadlock:

1) Mul will first attempt to read an element from the output of Mm.
2) However, Mm will not produce an output until it reads all the

elements from the source node.
3) Meanwhile, Cos will attempt to write its outputs to Mul, which

is blocked waiting for Mm’s output; thus, after two output
elements, the output stream for Cos will become full, blocking
Cos from consuming more elements from its input stream.

4) As a result, when the source node attempts to write the fifth
output element to the input of Cos, it will stall, thus preventing
Mm from receiving any more input.

All four nodes in the computation graph become stalled waiting for
each other cyclically, resulting in deadlock.

In this simple example, it is easy to see the cause of the deadlock
and to determine a resolution: increase the stream depth of Cos’s input
to the total number of elements. However, the computation graphs
for higher-order gradients can contain hundreds of nodes, thereby
introducing complex dependency chains that cannot be analyzed by
hand. Repeated simulation of the dataflow design with different FIFO
depths is also infeasible, as the number of FIFOs involved in such a
large computation graph leads to a massive design space. Thus we
need a systematic approach to detecting and resolving deadlocks.

Our proposed solution is a dataflow graph where nodes represent
individual FIFO I/O operations (reads and writes) and directed edges
represent “happens-before” relations. This graph encodes the entire
behavior of a dataflow architecture with a given set of FIFO depths,

Producer
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A0 A1 A2

B0 A0 A1 A2

B0
(a) Per-process ordering

From simula�on trace

Producer

Consumer

A0 A1 A2

B0 A0 A1 A2
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(b) RAW dependencies

Read-a�er-write (Xn→Xn)

(c) WAR dependencies
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where d is depth of stream X

Producer

Consumer

A0 A1 A2

B0 A0 A1 A2

B0
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(d) Deadlock detec�on

Finding cycles

Fig. 6: An example showing how the dataflow graph is constructed
and used to detect deadlocks by searching for cycles. This example
involves two FIFOs, A and B, both with depth 2. Green nodes
represent FIFO writes; red nodes represent FIFO reads.

and thus it can be used to determine precisely whether or not there
will be a deadlock for some set of FIFO depths.

Fig. 6 shows a simple example of the construction of this graph.
In this example dataflow design, a producer process writes to two
streams which are then read by a consumer process. Stream A
transfers three data elements, A0, A1, and A2, and stream B transfers
one, B0. Both streams have FIFO depth 2.

We start by determining the ordering of FIFO reads and writes
within each process, as shown in Fig. 6(a). To obtain this ordering,
we run our dataflow design through LightningSim [14], a trace-
based cycle-level simulator for HLS designs. The trace that Light-
ningSim generates internally precisely orders all FIFO operations on
a function-by-function basis. FIFO operations that must occur at the
same time are grouped into one node, and edges connect nodes in
the order defined by the trace. This trace only needs to be generated
once for a given design, as the trace order is independent of the FIFO
depths.

Then, in Fig. 6(b), we encode read-after-write (RAW) dependencies
into the graph by adding edges connecting each write to its corre-
sponding read: read #n from stream X cannot occur before write #n
to stream X. This establishes the ordering of nodes between dataflow
processes. As with Fig. 6(a), this is independent of FIFO depths and
only needs to be done once for a given design. The resulting dataflow
graph can be interpreted as the dataflow graph for a design where
the FIFO depths are “infinite” or unconstrained.

Fig. 6(c) shows the encoding of write-after-read (WAR) dependen-
cies into the graph. WAR dependencies are caused by limited FIFO
depths: if a stream X has a depth of d, after d writes to the stream,
the stream will be full unless or until at least one read has occurred
from the stream. Therefore, write #d depends on read #0. Following
similar logic, it follows that any write #n where n ≥ d depends on
read #(n − d). In Fig. 6(c), with both FIFO depths set to 2, only
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write A2 depends on read A0.
Finally, Fig. 6(d) demonstrates the deadlock detection algorithm,

which is equivalent to finding cycles in the graph. Since edges
represent “happens-before” relations, cycles represent that a node
must happen before itself for the computation to proceed, which
clearly represents a deadlock. In the figure, the write to A2 must
occur before the write to B0 (by intra-process order), the write to B0

must occur before the read from B0 (by RAW dependency), the read
from B0 must occur before the read from A0 (by intra-process order),
and the read from A0 must occur before the write to A2 (by WAR
dependency).

To resolve a deadlock, the depths of one or more of the streams
with a WAR dependency in the cycle must be increased. In this
example, the only WAR dependency in the cycle involves stream A,
whose depth must be increased from 2 to 3 to resolve the deadlock.

Different combinations of stream depths can be quickly tested for
deadlock by starting from the unconstrained graph, containing only
intra-process and RAW dependencies, then adding WAR dependen-
cies according to the stream depths and checking for cycles.

4) FIFO Depth Optimization
Even if we determine a set of FIFO depths that are deadlock-free,

it might be far from peak performance, or it might use excessive
resources compared to similarly performant designs. We need a
procedure to determine the peak performance of the design and find
a set of FIFO depths that achieve similar performance without using
excessive memory for FIFO buffers.

Luckily, the dataflow graph from Sec. 3.2.3 also allows us to
estimate the latency of a dataflow design by assigning a minimum
delay to each edge in the graph. We perform a topological sort
on the nodes in the graph, then compute each node’s latency as
the maximum of its predecessors’ latencies combined with the edge
delays. The maximum latency across all nodes in the graph is a very
close estimate to the latency of the overall design, excluding stalls
incurred by, e.g., off-chip DRAM reads and writes.

Using these latency estimates, we are able to minimize memory us-
age without impacting performance. We start with the unconstrained
graph and compute its latency estimate, which represents the peak
performance of the design. Then, one by one, we constrain the depth
of each stream to 2—the minimum depth for a FIFO queue—and re-
run the latency estimator to see if the constraint changes the overall
latency significantly (by more than a threshold α, which is set to
1% in our implementation). If it does, we discard the constraint;
otherwise, we accept the new constraint. Once all streams have been
evaluated, we run a simulation to determine the actual FIFO depths
observed (peak number of FIFO queue slots used at any point in
the simulation) under the newly added constraints. We use these
observed numbers (with a minimum of 2 for each stream) as our
final, optimized set of depths for all FIFOs in the computation graph.

5) Code Generation
The final HLS model is generated (and can be compiled and

synthesized) using the code generation component of the presented
framework. Code generation is done using a template-based com-
piler that maps kernels from the INR-Arch hardware library to an
HLS implementation of the model using the described dataflow
architecture. Most of the implementation is simple initialization for
array_stream data structures and 1-to-1 mapping of functions
in the computation graph to functions in the hardware library.

However, care needs to be taken when mapping hardware kernels
to properly insert the hardware kernel calls in the correct topological
order, as well as preserve the correct argument order from the

computational graph. Each intermediate activation’s argument order
is stored in the associated edge as an edge feature in the processed
computations graph, which is then referenced during code generation
to generate kernel call argument lists. Care also must be taken
to insert copy_stream kernels after function calls to effectively
“multicast” kernel outputs to the correct downstream kernel inputs.
This is done by extracting the edges to successors in the computation
graph. These edges then become the edges to which the kernel output
is multicast using the copy_stream kernel.

The metadata associated with array_streams is stored as
compile-time information in the array_stream struct implemen-
tation. The importance of this compile-time information becomes
clear when computation kernels access array shape data through
typename template arguments. This vital information at compile-
time during High-Level Synthesis (HLS) can be skillfully utilized
within the computation kernels for operations such as unrolling and
pipelining of loops, which are dependent upon the array shape and
block size specific to an individual array_stream, as well as static
asserts to check properties about the input arrays (e.g., array sizes
for MM). For a more comprehensive overview of using modern C++
features to implement these compile-time design features in HLS, we
direct interested readers to [15] as well as our source code.

The Python API for code generation takes in the processed
computation graph (Sec. 3.2.2) along with the computed FIFO depths
from the deadlock analysis and FIFO depth optimization (Sec. 3.2.3,
Sec. 3.2.4). Additionally, the user is able to specify the target FPGA
board along with desired fixed-point precision for the implemented
HLS model which maps to the Vitis HLS arbitrary-precision fixed-
point data structures. The code generation also handles the automated
generation, compilation, and execution of a C++ testbench using the
fixed-point model. This helps a user experiment and tweak the fixed-
point precision used for the best resource usage vs. accuracy trade-off
for model inference. Lastly, code generation handles the automated
synthesis of the generated HLS model and extraction of synthesis
report data for analysis.

4. RESULTS

A. Evaluation Setup

As a case study to evaluate our framework, we measure the
performance of two models derived from Xu et al. [12], a recent
computer vision work that uses high-order gradients of a SIREN
model [3] to apply a variety of image transformations, such as
blurring or denoising, directly to an image encoded as a SIREN INR.

We evaluate two configurations, namely, the first-order and second-
order gradients of the SIREN model as computed in [12], using batch
size 64 in both cases. The design for each of these two configurations
was generated by the framework and synthesized using Xilinx Vitis
HLS for the Xilinx Alveo U50 Data Center Accelerator at 300 MHz.
A 32-bit fixed-point format with 10 integer bits was used for the data.

For the first-order model, a hardware parallelism factor of 64×
was used for all MM operations. However, since the computation
graph of the second-order model is so much more complex than that
of the first-order model, the second-order model must use a lower
parallelism factor of 16× for all MMs in order to avoid exceeding
available resources on the target device.

FPGA latency results are collected using a highly accurate cycle-
level simulator for HLS designs [14], while resource estimates are
provided by the HLS tool itself. Baseline results on CPU (Intel
Xeon Gold 6226R) and GPU (NVIDIA RTX A6000) were measured
directly from the gradient computation code in [12], written using
the PyTorch framework.
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Fig. 7: Main comparison results for latency, energy-delay product,
and memory of 1st-order and 2nd-order INR models between GPU,
CPU, and the proposed FPGA implementation. The y-axes are log
scales.

TABLE I: Performance comparisons.
Model Device Latency (ms) Memory (MiB) EDP (J·ms)

1st Order CPU 3.34 (1.83×) 7.63 (8.93×) 0.17 (1.67×)
1st Order GPU 2.80 (1.53×) 3.64 (4.26×) 0.55 (5.51×)
1st Order FPGA 1.83 (1.00×) 0.85 (1.00×) 0.10 (1.00×)

2nd Order CPU 12.17 (4.78×) 23.58 (3.07×) 2.20 (11.34×)
2nd Order GPU 9.22 (3.62×) 13.08 (1.71×) 6.36 (32.75×)
2nd Order FPGA 2.54 (1.00×) 7.67 (1.00×) 0.19 (1.00×)

Comparison factors (parenthesized) are relative to the corresponding FPGA metric.

B. Latency, Energy Efficiency, and Memory

Results are shown in Table I and Table II. Across both first-order
and second-order models, the FPGA implementation beats CPU and
GPU baselines in three key metrics: latency, memory usage, and
energy-delay product.

Our first-order gradient model on FPGA achieves a significant
speedup over CPU and GPU baselines, but the speedup achieved
by our second-order gradient model is even more pronounced, where
the generated accelerator achieves nearly 4× speedup over GPU and
nearly 5× over CPU.

Notably, Table II shows how, when the same MM parallelism factor
is used for different-order gradients, the latencies of the resulting
accelerators are very similar. This demonstrates the advantage of our
dataflow architecture: because we can overlap most of the kernels
in the computation graph, a larger computation graph induced by

TABLE II: Resource usage vs. latency on the Alveo U50.

Model 1st Order 1st Order 2nd Order
MM Parallelism 64× 16× 16×

Latency (ms) 1.83 2.55 2.54 Available

BRAM 389 (14%) 233 (9%) 419 (16%) 2,688
DSP 3,343 (56%) 1,039 (17%) 3,889 (65%) 5,952

FF 529k (30%) 277k (16%) 952k (55%) 1,743k
LUT 367k (42%) 234k (27%) 781k (90%) 871k

URAM — 48 (8%) 192 (30%) 640

TABLE III: Computation graph optimizations.
Node Types

Optimization Nodes Edges T Permute Other

Original graph 5,531 7,326 438 945 4,148
+ Dedupe common subtrees 459 (−92%) 626 (−91%) 63 5 391
+ Replace “Permute”s → “T”s 459 (±0%) 626 (±0%) 68 0 391
+ Remove “T” pairs 420 (−8%) 587 (−6%) 29 0 391
+ Dedupe common “T”s 396 (−6%) 563 (−4%) 5 0 391

a higher-order gradient does not always mean the latency will be
significantly higher. Even when MM parallelism must be reduced for
the model to fit within the target device’s resources, it does not result
in an increase in latency by the same factor.

(That the 1st-order model with 16× MM parallelism is slightly
slower than 2nd-order model with 16× MM parallelism may initially
appear erroneous, given that the 1st-order computation graph is a
subset of the 2nd-order graph. However, it is a result of our FIFO
depth optimization process and will be explained in Sec. 4.4.)

We also see significant memory savings over CPU and GPU
baselines, about 9× less memory than CPU and 4× less memory than
GPU on the 1st-order model and about 3× and 2× less than CPU and
GPU on the 2nd-order model.

Our framework demonstrates its strongest advantage in energy
efficiency over CPU and GPU baselines: our model achieves an
energy-delay product over 11× lower than CPU and nearly 33× lower
than over GPU on the 2nd-order model, thanks to the combination of
low latency and low power achieved by our FPGA design.

C. Graph Optimization

We perform an ablation study of our computation graph optimiza-
tion techniques described in Sec. 3.2.2 and report our findings in
Table III. The most significant optimization is the de-duplication
of common subtrees in the graph, which accounts for over 90%
reduction in both nodes and edges over the unoptimized graph.
However, the other optimizations we perform result in significant
drops in the number of “Permute” and “T” nodes, collectively
dropping their combined total from 68 nodes to just 5. This minimizes
bottlenecks in the dataflow computation, as “Permute” and “T” both
require buffering the entire input stream before writing outputs.

D. FIFO Depth Optimization

We also evaluate the effectiveness of the FIFO depth optimization
scheme described in Sec. 3.2.4 in reducing memory usage. We
consider two metrics: the latency of the model and the sum of FIFO
depths, which acts as a proxy for the memory consumed by the
FIFOs. We evaluate each metric both before and after optimization,
where the set of FIFO depths before optimization is determined as
the depths actually observed (with a minimum of 2 for each stream)
when we run a simulation with all FIFO depths unconstrained (i.e.,
a simulation of peak performance).
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TABLE IV: Before and after FIFO depth optimization.
Before Optimization After Optimization

Model MM ∥ Latency (ms)
∑

Depths Latency (ms)
∑

Depths

1st Order 64× 1.823 125,586 1.828
(+0.3%)

15,579
(−87.6%)

1st Order 16× 2.538 125,661 2.551
(+0.5%)

15,643
(−87.6%)

2nd Order 16× 2.545 668,601 2.545
(+0.0%)

96,808
(−85.5%)

MM∥ = MM parallelism;
∑

Depths = Sum of FIFO depths

Fig. 8: A trace of FIFO reads for a representative subset of hardware
computation kernels in the main dataflow region of the Base INR +
1st Order Gradient INR-DSP model.

Table IV shows our results. In all three cases evaluated, we achieve
over 85% reduction in FIFO depths with less than 1% degradation
over peak performance.

These results also explain why the 1st-order model with 16× MM
parallelism runs slightly slower than the 2nd-order model with 16×
MM parallelism, despite the 1st-order graph being a subset of the
2nd-order graph. At peak performance, the 1st-order model is slightly
faster; however, the FIFO depths selected for these two models by the
optimization process in Sec. 3.2.4 end up causing the final latency of
the 1st-order model to slightly exceed the final latency of the 2nd-order
model. This can be avoided by adjusting the acceptable threshold α
during depth optimization.

E. Dataflow Trace Visualization

Novel simulation tools [14] are used to dump and inspect sim-
ulation traces to analyze FIFO read and FIFO writes and better
understand data movement along array_streams.

The FIFO reads over time during computationally intensive op-
erations, mainly matrix multiplication (MM), are shown in Fig. 8.
Due to the ordering of dependencies in the computation graph, it is
clear when some MM operations are computing in parallel, as well as
when data is being stalled periodically for downstream computation
kernels. Work is ongoing to show other complex simulation behavior
of the dataflow to better understand FIFO depths over time for better
FIFO sizing and deadlock detection.

5. CONCLUSION

In this paper, we introduced INR-Arch, a framework for dataflow
architectures of nth-order gradient computations. This addresses the
challenges that traditional architectures encounter when computing

higher-order gradients efficiently. We centered our evaluation appli-
cation on INR editing and compared our framework against CPU and
GPU baselines. We demonstrated significant speed improvements,
decreased memory usage, and a lower energy-delay product than both
the CPU and GPU baselines.

Future work involves extending our evaluation to include higher-
order gradients, examining the applicability of our framework to
diverse models, and addressing large, intricate designs like those
found in high-performance computing (HPC). These complex designs
involve computational kernels or FIFO buffers that may not fit on
the board. Furthermore, we plan to continue developing highly opti-
mized and compact model caricatures for additional edge computing
applications. By expanding our framework to handle higher-order
gradients, we can further illustrate its adaptability and effectiveness
across a wider range of applications. Moreover, our goal is to adapt
our framework to suit different models, empowering researchers to
utilize FPGA acceleration for a multitude of computational tasks
beyond the INR editing scenario.

By providing an open-source implementation on GitHub, we invite
further exploration, collaboration, customization, and deployment of
our framework. This approach can serve the distinct needs of various
research domains.
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