
Designing CGRAs with Deep 
Reinforcement Learning

Jackson Woodruff, Chris Cummins
University of Edinburgh, Meta AI



CGRAs

(Tan 2021)



CGRA Use Cases

Library-Based Acceleration
(e.g. NXP PowerQuad)

(Relatively) Easy Design 
Process

(NXP PowerQuad Documentation)

(Liu, Micro 2022)



Why Design CGRAs?

- Low power
- Flexibility
- Easy Programmability
- Mature Toolchains



Simulated Annealing-Based Design



RL-CGRA



RL-CGRA Agent Design



RL-CGRA Results



RL-CGRA Open Questions

- What about applications is causing performance differences?
- Is it possible to do compiler-directed learning with code features in reasonable 

times?
- What features?

- Can these techniques apply to finer-grained architectures?
- What is best format of compiler feedback?



Conclusions

- Explores RL agents for CGRA design
- Integrate compiler-feedback directly into hardware design toolchains
- Learn from previous experience doing so



References
C. Tan, C. Xie, A. Li, K. J. Barker and A. Tumeo, "OpenCGRA: An Open-Source Unified Framework for Modeling, Testing, and Evaluating CGRAs," 
2020 IEEE 38th International Conference on Computer Design (ICCD), Hartford, CT, USA, 2020, pp. 381-388, doi: 10.1109/ICCD50377.2020.00070

S. Liu et al., "OverGen: Improving FPGA Usability through Domain-specific Overlay Generation," 2022 55th IEEE/ACM International 
Symposium on Microarchitecture (MICRO), Chicago, IL, USA, 2022, pp. 35-56, doi: 10.1109/MICRO56248.2022.00018.

 


