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CGRAs

(Tan 2021)



CGRA Use Cases

Library-Based Acceleration
(e.g. NXP PowerQuad)

(Relatively) Easy Design 
Process

(NXP PowerQuad Documentation)

(Liu, Micro 2022)



Why Design CGRAs?

- Low power
- Flexibility
- Easy Programmability
- Mature Toolchains



Simulated Annealing-Based Design



RL-CGRA



RL-CGRA Agent Design



RL-CGRA Results



RL-CGRA Open Questions

- What about applications is causing performance differences?
- Is it possible to do compiler-directed learning with code features in reasonable 

times?
- What features?

- Can these techniques apply to finer-grained architectures?
- What is best format of compiler feedback?



Conclusions

- Explores RL agents for CGRA design
- Integrate compiler-feedback directly into hardware design toolchains
- Learn from previous experience doing so
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