
HashMem : PIM-based Hashmap Accelerator
Akhil Shekar, Morteza Baradaran, Sabiha Tajdari, and Kevin Skadron

University of Virginia, School of Engineering and Applied Sciences, Charlottesville, VA, USA

{as8hu, rgq5aw, jvx2tt, skadron}@virginia.edu

ABSTRACT

Hashmaps are widely utilized data structures in many
applications to perform a probe on key-value pairs. How-
ever, their performance tends to degrade with the increase
in the dataset size, which leads to expensive off-chip mem-
ory accesses to perform bucket traversals associated with
hash collision. In this work, we propose HashMem, a
processing-in-memory (PIM) architecture designed to
perform bucket traversals along the row buffers at the
subarray level. Due to the inherent parallelism achieved
with many concurrent subarray accesses and the massive
bandwidth available within DRAM, the execution time
related to bucket traversals is significantly reduced. We
have evaluated two versions of HashMem, performance-
optimized and area-optimized, which have a speedup of
49.1x/17.1x and 9.2x/3.2x over standard C++ map and
hyper-optimized hopscotch map implementations respec-
tively.

Keywords - Processing In Memory, HashMaps, In-Situ Com-
puting, DRAM, Memory Systems

1. INTRODUCTION
As we move further into the digital age, the amount of

data being generated and consumed daily is increasing at an
unprecedented rate. One of the popular data structures for
searching large datasets is a hashmap, due to its near-constant-
time lookup performance. For large datasets, the hashmaps
usually are not cache-resident, and hence, any lookup would
be an expensive off-chip DRAM access to read the entire
hash chain to perform a single probe.

By supporting hashmap lookup directly in memory, i.e. us-
ing a processing-in-memory (PIM) architecture, applications
can avoid costly memory transfers between the processor
and memory, leading to faster and more efficient lookups.
Hashmaps are particularly well-suited to PIM architectures,
as they are able to leverage the parallel processing capabilities
of the memory to perform lookups and hash-chain traversals
in constant time.

For a brief background, a hashmap is a data structure that
allows efficient storage and retrieval of key-value pairs. It
uses a hash function to compute an index into an array of
buckets or slots from which the desired value can be found.
In other words, a hashmap is an associative array that maps
keys to values.

The computation of hashmaps is memory-bound because it
heavily relies on accessing memory when the dataset cannot
fit within the cache. When searching for a key in a hashmap,
the hash function is used to compute the index of the bucket

where the key is stored. The bucket is then accessed in
memory to retrieve the value associated with the key. As
the size of the hashmap increases, the number of memory
accesses required to perform a lookup also increases, making
it a memory-bound operation.

Processing-in-memory is a new architecture paradigm that
breaks down the memory wall by integrating processing ele-
ments within the memory chips themselves. This eliminates
the need for data to be transferred between memory and pro-
cessor, leading to significant improvements in performance
and energy efficiency [9].

In this paper, we propose HashMem, a PIM architecture
designed to accelerate key-value probes on hashmaps. Our
architecture comprises two versions: area-optimized and
performance-optimized. Both place processing elements ad-
jacent to each subarray in the DRAM, but the area-optimized
provides one processing unit per subarray and operates on
one value at a time, i.e., element-serial, bit-parallel; while the
performance-optimized provides multiple processing units
per subarray, operating on the entire row at once in an element-
parallel but bit-serial fashion. Thus, in the latter case, the val-
ues are laid out in a column-oriented fashion, so that each row
contains a single-bit slice from thousands of values, achieving
high parallelism at the expense of requiring b steps in order
to find a b-bit key.

These organizations are evaluated against standard C++
map and hyper-optimized hopscotch map implementations
and found to yield significant speedups compared to a server-
grade CPU: 17.1x/3.2x (area-optimized) and 49.1x/9.2x (per-
formance optimized) over standard C++ map and hyper-
optimized hopscotch map implementations respectively. The
in-situ processing with PIM also minimizes energy spent on
moving data, thus achieving energy savings in addition to the
performance benefit. Quantifying the energy savings is left
for future work.

2. HASHMEM ARCHITECTURE
We have designed and implemented a PIM architecture that

leverages the lower access latency and inherent parallelism
available within the DRAM structure at the subarray level
to perform hashmap lookups at the subarray interface. Our
key idea behind the design involves mapping an entire hash
bucket to a subarray row within PIM memory. Each subarray
row contains between 512-2048 columns, where a column is
defined in terms of a multi-bit access length, with each such
column being 4, 8 or 16 bits in length. Internally each of these
subarrays could be broken down into mats for implementation
purposes. However, we consider a subarray to be a set of
mats that are activated in parallel for our understanding of
the rest of the paper.

1



Since an entire hash bucket happens to be mapped to a
subarray row, the entire bucket is activated into the row buffer
when the subarray row is accessed. We designed processing
elements (PEs) to sit at the edge of each subarray closer to the
row buffer to perform lookups for necassary keys within the
activated hash bucket. Each PE consists of (i) comparison
unit to perform the comparison operation, (ii) control unit or
logic to orchestrate and control the operations and (iii) output
register to hold the resultant value associated with a matched
key during the lookup operation. In our architecture, we
propose two implementations of these comparison units, an
area-optimized version and a performance-optimized version.

Processing Element

Comparison Unit

Control Unit

Output Register

Row Buffer

Key Value Key Value Key Value

Key Value Key Value Key Value

Key Value Key Value Key Value

Key Value

Key Value

SubArray

Figure 1: Area-optimized HashMem Architecture

2.1 Area-optimized version
The area-optimized version of HashMem performs the

hash bucket traversal in an element-serial bit-parallel manner.
Fig. 1 demonstrates the architecture for the area-optimized
version. The PE accesses each of the activated hash bucket’s
key-value pairs sequentially from the row buffer and looks for
a key match. Upon a match, the corresponding value would
be stored within its output register to be read out later by
the RLU.

2.2 Performance-optimized version
As shown in Fig. 3, the performance-optimized version

relies on placing many small comparison units below the row
buffer to scan all the keys in parallel within a single or small
number of clock ticks. Compared to the Area-optimized
version, this offers higher performance with lower execution
time but suffers from increased area overhead since many
comparison units must be placed and pitch-mapped along the
subarray row buffer. This version resembles the operation
of Content Addressable Memory (CAM) except that this is
operating on a DRAM row buffer at the subarray-level.

2.3 Rank-Level Unit (RLU)
The HashMem architecture also involves the usage of a

Rank-level Unit (RLU), which acts as an intermediary orches-
trating agent or command processor between the in-situ PIM
processing elements and the host processor (CPU). The job
of the RLU is to : (i) Propagate the key to be searched to the
necessary subarray (ii) Orchestrate probing operations com-
pliant with the DRAM timing parameters and architecture

D
IM
M

D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

RLU

D
IM
M

Figure 2: RLU mounted at rank-level

constraints (iii) Retrieve the output values after the probing
operation is completed from the subarray units and buffer
them before transferring them to the memory controller.

The RLU helps in the overall integration with the rest of the
system by abstracting the PIM operations and interfacing with
the Memory Controller (MC) with special PIM-capable ex-
tended DRAM commands. This ensures the host can support
the PIM capabilities with minimal changes to its integrated
memory controllers. The RLU is responsible for commu-
nicating with the in-situ subarray level PIM elements and
orchestrating operations amongst them. It is analogous to the
command processor (CP) that exists within GPUs to interface
with its Streaming Multiprocessors (SMs) or Compute Units
(CUs) and the PCIe bus. As shown in figure 2, since the RLU
is mounted as a separate chip, the logic area overhead of
the RLU does not affect the memory capacity of the DIMM,
as observed in similar rank-level modifications done with
AxDIMM [4].

Row Buffer

Comparison Unit Comparison Unit Comparison UnitProcessing Element

Control Unit

Output Register

Key Value Key Value Key Value

Key Value Key Value Key Value

Key Value Key Value Key Value

Key Value

Key Value

SubArray

Figure 3: Performance-optimized HashMem Architecture

2.4 Virtualization
The CPU operates on physical addresses in the typical

fashion. Hence, in order to make the PIM memory systems
compatible with the current virtualization scheme, we rely on
storing hash buckets at page granularity. With this, irrespec-
tive of the location of page within physical memory, when a
hash bucket is accessed, the corresponding page containing
the bucket is activated and its related subarray processing
elements are enabled to perform the lookup operations. In
scenarios where a page is co-located with other pages in the

2



same row buffer, the page start and end addresses are com-
municated to the subarray PEs to access only the necessary
address range. Using this scheme, the traditional virtualisa-
tion is still supported without the need for CPU to concern
itself with physical data placement to orchestrate PIM opera-
tions.

2.5 Probing
Once the initial dataset is populated within the PIM mem-

ory, the CPU communicates the key to be probed in the
respective hash bucket. The page table translation helps in lo-
cating the necessary rank (RLU) and subarray row that holds
the hash bucket. The respective RLU receives a compute-
capable DRAM command that informs it of the input key
to be probed and the address of the page to be probed. The
RLU, in turn, orchestrates the probing operation by activat-
ing the necessary subarray row and communicating to the
in-situ subarray PE to perform the actual probing operation.
The RLU later retrieves the value from the output register
of the same subarray-level PE and passes it to the Memory
Controller (MC) in a cache line format. The cache line can
be padded with additional zeroes if the data being transferred
is less than the size of a cache line. The MC, after receiving
the data from the RLU, places it into the requested CPU’s
Last Level Cache (LLC) address. Once the CPU reads and
extracts the value from the cache, the probing operation is
complete.

Currently, deletion operations involve putting tombstone
values at the place where a key-value pair is deleted, at the
cost of wasted space. This is similar to software implemen-
tation of hashmaps. We aim to further investigate how to
perform efficient deletion operations to reclaim the space
back for further usage while using the hashmap on PIM.

Often times, the load distribution of key-value pairs amongst
the hash buckets is not equal and this might lead to some buck-
ets having too many key-value pairs and some having too
few. We ran a test case scenario where we mapped the first
350,000 words of a dictionary into a hashmap and measured
the length of each bucket. We observed a significant variance
in the lengths as shown in fig. 4 that demonstrated the under
and over-utilisation of buckets.

Under-utilized buckets - If the page size is N bytes of
memory, and the bucket occupies only P bytes of data (where
P < N), then the remaining (N-P) bytes of the page are wasted
and lead to inefficient memory usage. The page size N is
dictated at the boot time without any prior knowledge of the
dataset. The value of P (bucket size) is decided during the
runtime and depends on the input dataset. Hence, there are
bound to be certain buckets which are under-utilized and
efforts could be made to map and fit two or more of such
buckets into the same page. This helps in reorganising the
memory and improving its utilization. However, care has
to be taken to ensure proper bookkeeping of the relocated
buckets. Also, a strict criterion that the bucket to be relocated
is not split and fragmented across multiple pages is to be
followed.

Over-utilized Buckets - Some hash buckets may exceed
the allocated page size of N bytes and occupy P bytes (where
P > N), resulting in an overflow situation that needs to ac-
commodate an extra (P-N) bytes. In these scenarios, an extra

page is allocated to accommodate the overflow data, and a
bookkeeping structure is updated to record the presence of
hash bucket across two or more pages which helps while
performing a lookup. Essentially, having these extra pages
spread across different channels and ranks helps in probing
them in parallel, thereby improving the performance. This
optimization could be introduced into the Memory Manage-
ment Unit (MMU) to instruct it to spread pages containing
overly-utilized buckets across different channels evenly to
enable the parallel probing of pages. We have marked this as
an avenue for future work with micro-architectural changes
to be investigated to introduce to support for this optimization
strategy.

Alternately, several works such as [8, 12], propose ideal
hashing functions to counter this unequal distribution phe-
nomenon when certain prior knowledge of the dataset is
available to us.

Figure 4: Length of Hashbuckets after mapping first
350,000 words in a dictionary

2.6 Memory Controller (MC) Changes
The Memory Controller needs to have the capability to

differentiate between a conventional READ/WRITE opera-
tion and PIM operation. Specifically, it needs to understand
that a particular page being accessed is a hash bucket that
needs traversal/lookup to occur on the PIM side and retrieve
only the value associated with a specific key. This interaction
with the MC should be invoked by the CPU and abstracted
from the programmer and exposed as a simple library call.
Towards this end, it could be suggested as an extension to the
ISA and change on the micro-architectural implementation.
Furthermore, we also suggest that the MC have capabilities
to communicate with RLU on the other side of the memory
bus using special physical layer (PHY) commands that are
pin-compatible with the existing DDR standards. The RLU
present on the DIMM provides the necessary abstraction to

3



the memory controllers to understand and parse these special
PIM commands and orchestrate the operations with its related
in-situ subarray-level elements.

3. PROGRAMMING INTERFACES
We have provided snippets of code for insertion and lookup

in the HashMem PIM-capable memory below. A pseudo-
code is listed that provides the necessary abstraction for the
programmer to utilize this PIM-capable memory using a high-
level programming language. We make use of a bookkeeping
structure that keeps track of the hash buckets and the pages
that store them.

3.1 Insertion Operation
The overall idea behind the insertion operation is to ob-

tain the hash bucket (or page/pages the bucket is mapped to)
that needs to store the key-value pair by performing a hash
function on the key. However, there are several constraints,
as mentioned in Section 2, that need to be looked after, es-
pecially with regard to bucket utilization and page overflow
scenarios.

Initially, in Step-➊, we obtain the page size from the sys-
tem information using a library call. This information is
usually stored in the operating system after the boot proce-
dure has initialized the page tables and other virtualization
structures. In ➋, we hash the key and decide the bucket and
page in which to store the key-value pair. Consequently, we
need to perform a check if the bucket is going to overflow in
step-➌ while inserting the input-key-value pair. If the bucket
is not going to overflow, then the key-value pair could be
inserted successfully, as in Step-➍. However, if the bucket is
about to overflow, we do pim_malloc() to initialize a fresh
page in step-➎. We update a bookkeeping structure to reflect
that a particular hash bucket extends to a new page. This is to
ensure any subsequent lookup operations probe the new page
in addition to the prior existing page/(s). Once the bookkeep-
ing structure is updated, we go ahead and store the key-value
pair on the new page (step-➏) and provide the necessary re-
turn code to reflect the successful insertion of the key-value
pair.

Listing 1: PIM Insertion Operation
void MapInputKeyValuePairToHashMemPage(keyDataType

inputKey, valueDataType inputValue) {

pageSizeInBytes = getPageSizeFromSystemInfo(); ➊
/* This Page Size is decided during the boot

time based on subarray structures. This
information is retrieved using the
runtime system information call. */

numOfKVPairsPerPage = pageSizeInBytes /
sizeOfEachKVPair;

// Calculating number of KV pairs per page

destinationPage =
getHashValueFromHashingAlgorithm(inputkey); ➋

// Perform Hashing operation to decide which
page the key-value pair needs to be
mapped to

currentNumOfKVPairsInPage =

getCurrentPageSize(destinationPage);
// Get size current page size in terms of

how many number of key-value pairs it
is currently holding

/* Perform a check if the page can accomodate the
key-value pair or not */

if(currentSizeOfPage < numOfKVPairsPerPage) ➌ {
storeKVPairIntoPage(destinationPage, inputKey,

inputValue); ➍
// Store the KV pair into the destinationPage

}
else{ // if page is already full

pim_page newPage;
ret_code = pim_malloc(newPage); ➎
// allocates a new page and assigns to newPage

structure
if(ret_code == PR_ERROR)

return PR_ERROR; // Page allocation
failed, function exits

updateBookkeepingStructure(newPage,
destinationPage); ➏

/* Attaches and links new page to old
page (destination_page) in a Linked
List fashion. This book-keeping
structure also informs that these
two pages (new page and old page)
need to be probed together when
looking for keys. Because the key
can reside either in new page or old
page. */

storeKVPairIntoPage(newPage, inputKey,
inputValue);

// Store the key-value into the newPage
}
return PR_SUCCESS;

}

3.2 Lookup operation
The lookup operation is relatively simple and straightfor-

ward, where the user provides an input key and expects the
value associated with it to be returned. In Step-➊, the hashing
function computes the bucket and page to be probed based on
the input key provided. In Step-➋, we make use of a special
library call that performs a hash bucket lookup operation. In
the background process, the library call consults the book-
keeping structure to check the number of pages to probe and
instructs the MMU to perform page-level probing operations
that traverses the entire hash bucket using the subarray PIM
processing elements. These PIM probing operations retrieve
the value associated with the key and provide the necessary
return code to reflect the successful lookup operation.

Listing 2: PIM Probe Operation

valueDataType probeKey(keyDataType inputKey) {

bucketToProbe =
getHashValueFromHashingAlgorithm(inputkey); ➊

// Perform hashing to get the hash bucket to
probe

/* Variable to hold value associated with key-value
pair */

valueDataType outputValue = NULL;

4



outputValue = pimProbeBucket(bucketToProbe); ➋
/* This first checks the book keeping

structure as to how many pages to probe
and then issues a special pim probe
command to the memory controller to
perform probing on PIM-capable memory*/

/* If the value was not found */
if (outputValue == NULL)

return PR_ERROR;

return outputValue;
}

4. EVALUATION
In this section, we will discuss the performance and area

overhead of HashMem architecture and compare it with tra-
ditional CPU-based implementation baselines. The configu-
ration of the hardware setups utilized in our analysis are as
mentioned in the Table-1.

Table 1: Hardware Configuration
Property Value

Processor Name Intel(R) Xeon(R) Silver 4208 CPU (2.1 GHz)
Total Cores / Main Memory 8 (16 threads) / 512 GB
L1D/L2/L3 Cache Size 32 KB per core/1 MB per core/11.2 MB shared

HashMem DDR4_8Gb_x16_3200 (Single Channel)
8 banks per rank, 128 subarrays per bank
512 rows per subarray

Table 2: Workload Overview
Property Value

Dataset Contains 100 million key-value pairs (800 MB)
10% i.e. 10 million randomly selected keys probed

Points of Comparison Standard C++ Map (binary tree)
C++ unordered_map (hashmap)
hopscotch map (optmized hashmap)

4.1 Benchmarking
Currently, there exists no standard benchmark to test ex-

clusively for the hashmap performance. Hence, we proposed
our microbenchmark to test the hashmap performances on
both the CPU and HashMem. The details of the microbench-
mark and baselines we compare against are provided in the
proceeding section. In order to estimate and model the Hash-
Mem performance, we analyzed the timing data gathered
from prior works [1, 6, 7, 14].

4.1.1 Microbenchmark
One of the goals of the microbenchmark is for the input

dataset to be sufficiently large enough such that it flows out
of the cache and into the DRAM. This ensures that the cache
effects of the CPU are sufficiently eliminated and the expen-
sive off-chip DRAM accesses are captured while performing
lookups during microbenchmark run. Another goal is to
generate random accesses, i.e., accessing random keys to
eliminate any prefetching based on spatial locality.

Towards this end, we propose a microbenchmark consist-
ing of 100 million key-value (KV) pairs with a key and value
occupying 4 bytes each. The key and the value are coded
as default uint32_t data type in C++. Hence, each KV pair
would occupy 8 bytes of data, and the overall memory foot-
print of the input dataset would be 800 MB in size, sufficiently
large enough to overflow the L3 cache of most processors
used in our testing scenario. Furthermore, 10% of the keys in
the input dataset are probed, which equates to 10 million keys
being searched for in the hashmap. The keys to be probed
again are selected at random and fed into both the CPU and
PIM architectures simultaneously to assess the hashmap prob-
ing performance.

Although this benchmark does not account for string values
and other types of data, we envision that they could be pre-
processed and dictionary-encoded into numerical values to
be used in HashMem. Performing string value comparison
or any regex operations at the subarray-level units would
incur a very high area overhead and is avoided. Hence we
consciously supported probing just numerical values with
HashMem PIM architecture.

4.2 Performance of different data structures
on CPUs

C++ Map C++ Unordered Map Hopscotch Map
0

5

10

15

20

25

30

35

Pr
ob

e 
Ti

m
e 

(s
ec

on
ds

)

31.47

10.11

5.88

Figure 5: Probing Times of Different Data Structures

Our initial research indicated that “unordered_map” Stan-
dard Template Library (STL) in C++ has the closest imple-
mentation resembling a hashmap. However, there are sev-
eral other default C++ data structures that perform similar
operations as a hashmap but are implemented using alterna-
tive techniques. One of the most popular examples is the
“map” data structure that is implemented as a red-black tree,
a specialized binary search tree data structure. We intended
compare against both the unordered_map and map to assess
the performance.

Apart from the default C++ libraries, there are various im-
plementations that are more performance-optimized to yield
better throughput in performing key-value pair lookups. Hop-
scotch is one example that implements a hopscotch hashing
algorithm [3] to resolve hashing collisions [13]. We found
a popularly used repository online [2] that implemented this

5



hashing mechanism that we could consider as a state-of-the-
art baseline. Interestingly, we discovered that hopscotch_map
is faster than Google’s sparse-hash [10] implementation dur-
ing our testing. We intended our evaluations to compare with
a mix of candidates, hence our choice of these three software
implementations.

The performance results of the three data structures chosen
on CPU are demonstrated above in Figure-5. Hopscotch is
significantly faster than the other implementations by a wide
margin, around 5.3x and 3.1x compared to C++ map and
unordered_map, respectively. The map structure performs the
worst considering that it is implemented as a balanced binary
search tree with many indirect accesses to traverse along the
tree both during insertions and probing. The complexity of
a map is logn

2. Interestingly, we found that unordered_map
rehashes itself when the number of elements to be inserted
exceeds the load factor, i.e., the number of buckets available,
rather than having more nodes attached to extend each bucket
size.

4.3 Area overhead
To estimate the area overhead of subarray-level PIM pro-

cessing elements, we first obtain the area breakdown of the
DDR4 chip (DDR4_8Gb_x8_3200) that is used to build the
HashMem. Each subarray contains 512 rows, and there are
128 subarrays per bank. The comparator units of HashMem
are implemented in RTL and the delay, area overheads are
evaluated using Synopsys DC Compiler in 14nm. We use
scaling factors from [11] to scale the results to 22nm.

4.3.1 Performance optimized
For the performance-optimized version, there is a require-

ment to pitch-map the comparator units to fit within the sec-
tion boundaries of the row buffer containing the key-value
pair segments. This presents significant challenges related
to the evaluation of this version and this is part of the future
work to investigate HashMem further.

4.3.2 Area optimized
The area-optimized version does not require significant

efforts to pitch-map as was required with the performance-
oriented version. Our estimate revealed that incorporating 64
additional ALUs, shared by 128 subarrays per bank, incurred
only 5.26% area overhead.

5. RESULTS
The performance of hashmap workloads are both depen-

dent on the size and the distribution of the input dataset. The
numbers reported are for the evaluation of the dataset as
detailed in section 4.1.1 describing the microbenchmark.

Figure 6 highlights that our area-optimized HashMem ver-
sion outperforms the standard map, unordered map, and hop-
scotch map implementations, achieving speedup values of
approximately 17.1x, 5.5x, and 3.2x respectively.

As shown in figure 6, our performance-optimized Hash-
Mem surpasses the standard map, unordered map, and hop-
scotch implementations by even greater factors of 49.1x,
15.8x, and 9.2x respectively.

In both scenarios, HashMem outperforms the CPU baseline
by a wide margin, even against the state-of-the-art hopscotch

C++ Map C++ Unordered Map Hopscotch Map
0

5

10

15

20

25

30

35

40

45

50

S
p

e
e
d

u
p

49.1

15.8

9.2

17.1

5.5
3.2

Performance Optimized

Area Optimized

Figure 6: HashMem Speedup Against CPU

implementation. An interesting aspect of the experiment is
that these results represent a single DRAM channel com-
peting against a server-class CPU. We could parallelize the
lookups across the independent memory channels and obtain
further improvement in the HashMem performance. These
results demonstrate the potential of PIM architectures, which
have tremendous intrinsic parallelism and bandwidth that are
not being harnessed by current Von Neumann-bottlenecked
architectures.

6. FUTURE WORK
Our future work broadly aims at improving the architecture

with a richer set of evaluations. We aim to look at a wider
variety of datasets with different distribution patterns of key
and value strings to assess the hashmap performance in each
setting.

Tiered-Latency DRAM. [5] splits the subarray into low-
latency and higher-latency regions by placing isolation tran-
sistors to alter the DRAM READ access timings. We aim
to leverage this work to map our hashmap buckets into the
low-latency region for faster lookups. In a conventional ar-
chitecture, mapping several elements to a smaller subset of
buckets could degrade the performance. However, due to
parallelism provided by the PIM processing elements and the
lower-latency offered by the Tiered-Latency DRAM, it could
improve our performance significantly. Moreover, the lower
the number of buckets available within a hashmap, the higher
the probability of a row hit which further leads to improved
performance and decreased latency.

Channel-level Parallelism. Memory channels are inde-
pendent and parallel READ / WRITE operations could be
performed on each of the channels separately. Hence, if
there are multiple keys to be probed, these probing operations
could be parallelised amongst different channels to increase
the throughput. However, this type of parallelism could be
exploited only if the keys being probed belong to different
channels.

Energy Savings Analysis. Due to the vastly reduced num-
ber of expensive off-chip data access over the memory bus,
there are significant energy savings to be realised. This also

6



leads to reduced instruction overhead on the CPU related to
performing a scan operation on the hash bucket traversals.

Data Types. Currently our evaluations only support 32-
bit int operations on both key and value. The limitation is
with regards to the configuration of the subarray-level PIM
elements. We aim to investigate re-configurable sizes for
future evaluations to support other data types too.

Hash Function. We aim to investigate an optimum hash-
ing mechanism that can evenly distribute the input dataset
over several buckets of equal or near equal length. This is to
reduce certain buckets from getting over-utilized and some
from getting under-utilized. There are prior works in this area
such as [8].

Real-world kernels. Many genomics, database and other
applications extensively make use of hashmap structures in
their kernels while implementing them. We aim to test our
PIM architecture in these settings and observe the perfor-
mance improvements at the application level.

7. CONCLUSIONS
We proposed HashMem, a subarray-level PIM architecture

that accelerates hashmap lookups by leveraging the exist-
ing parallelism available within the DRAM structure. We
have demonstrated that the two variants of HashMem, area
and performance-optimized ones, were able to outperform
state-of-art hopscotch hashmap and default C++ map imple-
mentations on CPU by at least 3.2x/9.2x and 17.1x/49.1x
respectively. The area overhead as observed on the area-
optimized version was found to be 5.26%. We have laid
out several directions as part of our future work to further
investigate potential of HashMem architecture.

8. ACKNOWLEDGEMENTS
This work was supported in part by PRISM, one of seven

centers in JUMP 2.0, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA. We also thank the
reviewers for their helpful feedback and suggestions.

REFERENCES

[1] D. T. W. Bruce Jacob, Spencer W. NG, Memory Systems : Cache,
DRAM, Disk. Burlington, MA: Morgan Kaufmann Publishers, 2008.

[2] T. Goetghebuer-Planchon. (2015, Mar.) A c++ implementation of a
fast hash map and hash set using hopscotch hashing. [Online].
Available: https://github.com/Tessil/hopscotch-map

[3] M. Herlihy, N. Shavit, and M. Tzafrir, “Hopscotch hashing,” in
Proceedings of the 22nd International Symposium on Distributed
Computing, ser. DISC ’08. Berlin, Heidelberg: Springer-Verlag,
2008, p. 350–364. [Online]. Available:
https://doi.org/10.1007/978-3-540-87779-0_24

[4] L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han, Y. Cho,
J. H. Kim, Y. Kwon, K. Kim, J. Jung, I. Yun, S. J. Park, H. Park,
J. Song, J. Cho, K. Sohn, N. S. Kim, and H.-H. S. Lee, “Near-memory
processing in action: Accelerating personalized recommendation with
axdimm,” IEEE Micro, vol. 42, no. 1, pp. 116–127, 2022.

[5] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu,
“Tiered-latency dram: A low latency and low cost dram architecture,”
in 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), 2013, pp. 615–626.

[6] D. Levinthal. Performance analysis guide for intel core i7 processor
and intel xeon 5500 processors. [Online]. Available:
https://www.intel.com/content/dam/develop/external/us/en/
documents/performance-analysis-guide-181827.pdf

[7] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “Dramsim3: A
cycle-accurate, thermal-capable dram simulator,” IEEE Comput.
Archit. Lett., vol. 19, no. 2, p. 106–109, jul 2020. [Online]. Available:
https://doi.org/10.1109/LCA.2020.2973991

[8] Y. Lu, B. Prabhakar, and F. Bonomi, “Perfect hashing for network
applications,” in 2006 IEEE International Symposium on Information
Theory, 2006, pp. 2774–2778.

[9] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A
modern primer on processing in memory,” 2022.

[10] Sparse-Hash. (2020) sparse-haspmap. [Online]. Available:
https://github.com/sparsehash/sparsehash

[11] A. Stillmaker, Z. Xiao, and B. M. Baas, “Toward more accurate
scaling estimates of CMOS circuits from 180 nm to 22 nm,” Univ. of
California-Davis Tech. Report ECE-VCL-2011-4, 2012.

[12] Wikipedia. Open-addressing. [Online]. Available:
https://en.wikipedia.org/wiki/Open_addressing

[13] Wikipedia. (2015, Mar.) Hopscotch hashing is a scheme in computer
programming for resolving hash collisions. [Online]. Available:
https://en.wikipedia.org/wiki/Hopscotch_hashing

[14] Y. Yuan, M. Alian, Y. Wang, R. Wang, I. Kurakin, C. Tai, and N. S.
Kim, “Don’t forget the i/o when allocating your llc,” in 2021
ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 112–125.

7

https://github.com/Tessil/hopscotch-map
https://doi.org/10.1007/978-3-540-87779-0_24
https://www.intel.com/content/dam/develop/external/us/en/documents/performance-analysis-guide-181827.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/performance-analysis-guide-181827.pdf
https://doi.org/10.1109/LCA.2020.2973991
https://github.com/sparsehash/sparsehash
https://en.wikipedia.org/wiki/Open_addressing
https://en.wikipedia.org/wiki/Hopscotch_hashing

	Introduction
	HASHMEM ARCHITECTURE
	Area-optimized version
	Performance-optimized version
	Rank-Level Unit (RLU)
	Virtualization
	Probing
	Memory Controller (MC) Changes

	Programming Interfaces
	Insertion Operation
	Lookup operation

	Evaluation
	Benchmarking
	Microbenchmark

	Performance of different data structures on CPUs
	Area overhead
	Performance optimized
	Area optimized


	Results
	FUTURE WORK
	Conclusions
	Acknowledgements

