
Exploring Processing-in-Memory for
memory-bound applications in
computing systems

Byeongho Kim

Samsung Electronics

DRAM Design Team 1

Memory Technology
Trends and Challenges

Memory bandwidth-starved processors (memory-bound application)

High data movement energy from(to) memory

Low memory bandwidth utilization (random, sparsity)

AI system challenges

Source: * Y.-H. Eyeriss, 2016 ISCA

ALU

ALU

ALU

Normalized Energy Cost*

Energy Cost of Data Transfer

RF

RF

RF

RF

0.5-1.0 kB

1 x (Reference)

200 x

DRAM
Global

Buffer

PE PE

PE ALU
Fetch data to run

A MAC here

ALU

ALU

NoC: 200 – 1000 PEs

100 – 500 kB

1 x

2 x

6 x

Source : In-Datacenter Perf Analysis of a Tensor Processing Unit @ 2017, ISCA

Operation/Byte in ML Applications

10

1

0.1

100 1000

TeraOps/sec

(log scale)

100

1 10

Operational Intensity: Ops/weight byte (log scale)

Google TPU v1

nVidia K80

Intel Haswell

High Bandwidth Memory, but still need more

Column Decoder
Write Drivers

I/O Sense Amps

R
o
w

 D
e
c
o
d
e
r

Sub-array
Bit-line Sense Amps

B
a
n
k
 L

o
c
a
l
I/
O

Wordline
TSVs

Middle Control Logic (Bottom)

Middle Control Logic (Top)

Pseudo Channel

B
a

n
k
 G

ro
u

p

I/
O

Bank

Group

0

Bank

Group

1

Bank

Group

2

Bank

Group

3

Bank 0

Bank 1

Bank 2

Bank 3

HOST
MC

Si-interposer

Board

ASIC1 ASIC2BK C/A
DA IO IO

System in Package (SiP)

HBM core die

Buffer die

Core die
Core die

Core die
Core die

HBM helped breaking the memory wall, but system still requires more bandwidth for emerging applications

High bandwidth memory (HBM) was introduced to provides higher pin density with silicon
interposer and satisfies the demand for the off-chip memory bandwidth.

Processing-In-Memory (PIM)
• Fill the performance gap and deliver energy-efficient solutions [Hotchips 16, Samsung]

• PIM provides high ops/second and low power [Survey and Benchmarking of Machine Learning Accelerators]

PIM: Renewed interest

Processor

Main memory (DRAM)

Storage

PIM

Peak Power (W)

P
e

a
k

G
O

p
s

/S
e

c
o

n
d

Legend

Computation Precision

Int1

Int2

Int8

Int8 -> Int16

Int12 -> Int16

Int16

Int32

Float16

Float16 ->Float32

Float32

Float64

Form Factor

Chip

Card

System

Computation Type

Inference

Training

MIT Eyeriss

JetsonTX1

Xavier

DGX-2

WaveSystem

WaveDPU

TrueNorthSys

GraphCoreNode

GraphCoreC2

K80

2xSkyLakeSP

Phi7210F

Goya
Nervana

TPU3

TPU2

Turing

TPUEdge

TrueNorth

ArriaGX1155

MovidiusX
Zynq-020

XilinxCluster

ZCU102

Cambricon

Cambricon

DianNao

ShiDianNao

AIStorm

PuDianNao

Zynq-020

Zynq-020

S835

Mali-75

ArriaGX1150
ArriaGX1150

JetsonTX2

Nervana2 V100

Rockchip DaDianNao Zynq-060 Phi7290F

ArriaGX1150

ArriaGX1150

AMD-MI6

AMD-MI60

P100

Cell

GPUs
A12

Mali

-76

Very Low Power Mobile TPU1

S845
Stratix-V

FPGAs

DGX-1

DGX-Station

Data Center

Systems

Data Center

Chips &

Cards
Arria GX1150

Baidu

0.1 1 10 100 1000 10000
10

10²

10³

10⁴

10⁵

10⁶

10⁷

PIM

target

Challenges in developing commercial PIM

Driven by costs and hegemony struggle among industry stakeholders
• Processor design companies: We don’t have time and resource to change memory subsystems of our

processors for unproven technologies, especially something that …

• DRAM manufacturers: We don’t want to change DRAM core design for PIM as it has been optimized over
decades and thus hard and expensive to change

• Customers: We don’t want to change our application code just for PIM. We want homogeneous systems, i.e.,
PIM also need to serve as standard DRAM

Then, we propose PIM architecture without changes on the hosts by keeping current JEDEC
interface and timing parameters, same memory organization as previous DRAM, and provides full
software stacks and several applications to prove on a HBM2 based system

Introduction to HBM-PIM Architecture

Overview of PIM architecture

High on-chip compute bandwidth w/o changing DRAM core circuitry
• Place SIMD FPU at bank IO boundary

• Exploit bank-level parallelism: access multiple banks/FPUs in a lockstep manner

Expose high on-chip bandwidth of standard DRAM to processors
• Build on industry standard DRAM interfaces and preserve deterministic DRAM timing

• i.e., a DRAM RD/WR command triggers execution of a PIM instruction

TSVs & Periphery

16b FPU*

From

Registers

16b FPU

PIM Unit

Column Decoder

Write Drivers
I/O Sense Amps

R
O

W
D

E
C Cell Array

Registers

SIMD FPUs
To

Registers

256b

PIM

UNIT

PIM

UNIT

BANK

BANK

BANK

BANK

HBM Core Die Bank
From

IOSA

(Cell)

To

Write

Driver

(Cell)

(a) (b) (c)

PIM

UNIT

PIM

UNIT

BANK

BANK

BANK

BANK

PIM

UNIT

PIM

UNIT

BANK

BANK

BANK

BANK

PIM

UNIT

PIM

UNIT

BANK

BANK

BANK

BANK

BANK BANK BANK BANK BANK BANK BANK BANK

R
e

s
u

lt
 B

u
s

HBM-PIM: Exploiting bank-level parallelism

Normal

Memory

Space

PIM CONF
PIM-HBM

Mode Register
PIM CRF area

PIM GRF area

Reserved

Memory

Space for

PIM

PIM SRF area

PIM Block

Control area

Address targets a specific bank and operates command

PIM

UNIT

PIM

UNIT

BANK

BANK

BANK

BANK

PIM

UNIT

BANK

BANK

PIM

UNIT

BANK

BANK

DRAM die

Buffer die
Command/Address

D
a

ta

A command is sent

to a single bank

in SB mode as

normal DRAM

Data (DQ)

Single / All Bank

Mode Register

Command

ABMR 0
ABMR 1
ABMR 8
ABMR 9

SBMR 0
SBMR 1

SB AB AB-PIMSingle Bank (SB) mode:
• HBM-PIM works exactly same as normal DRAM (timing parameters, commands and address) but cannot

access reserved space for HBM-PIM

HBM-PIM: Exploiting bank-level parallelism

Normal

Memory

Space

PIM CONF
PIM-HBM

Mode Register
PIM CRF area

PIM GRF area

Reserved

Memory

Space for

PIM

PIM SRF area

PIM Block

Control area

PIM

UNIT

PIM

UNIT

BANK

BANK

BANK

BANK

PIM

UNIT

BANK

BANK

PIM

UNIT

BANK

BANK

DRAM die

Buffer die

A command is sent

to a single bank

in SB mode as

normal DRAM

Single / All Bank

Mode Register

To enter AB (All bank) mode,

Four ABMRs are need to be accessed.

ABMR 0
ABMR 1
ABMR 8
ABMR 9

SBMR 0
SBMR 1

SB AB AB-PIMSingle Bank (SB) mode:
• HBM-PIM works exactly same as normal DRAM (timing parameters, commands and address) but cannot

access reserved space for HBM-PIM

Address targets a specific bank and operates command

Command/Address

D
a

ta

Data (DQ)

Command

HBM-PIM: Exploiting bank-level parallelism

Normal

Memory

Space

PIM CONF
PIM-HBM

Mode Register
PIM CRF area

PIM GRF area

Reserved

Memory

Space for

PIM

ABMR 0
ABMR 1

PIM SRF area

ABMR 8
ABMR 9

SBMR 0
SBMR 1

PIM Block

Control area

PIM

UNIT

PIM

UNIT

BANK

BANK

BANK

BANK

PIM

UNIT

BANK

BANK

PIM

UNIT

BANK

BANK

DRAM die

Buffer die

A command is sent

to multiple banks

in AB mode,

Single / All Bank

Mode Register

SB AB AB-PIMAll Bank (AB) mode:
• All banks (data) / PIM units are working at the same time by one command (i.e., ACT, WR, RD, PRE)

Address targets a specific bank and operates command

Command/Address

D
a

ta

Data (DQ)

Command

HBM-PIM: Exploiting bank-level parallelism

PIM-HBM

Mode Register
PIM CRF area

PIM GRF area

ABMR 0
ABMR 1

PIM SRF area

ABMR 8
ABMR 9

SBMR 0
SBMR 1

PIM Block

Control area

PIM

UNIT

PIM

UNIT

BANK

BANK

BANK

BANK

PIM

UNIT

BANK

BANK

PIM

UNIT

BANK

BANK

DRAM die

Buffer die

A command is sent

to multiple banks

in AB mode,

Single / All Bank

Mode Register

SB AB AB-PIM

To enter AB-PIM mode, need to enable

PIM Block Control Register

Normal

Memory

Space

PIM CONF

Reserved

Memory

Space for

PIM

All Bank (AB) mode:
• All banks (data) / PIM units are working at the same time by one command (i.e., ACT, WR, RD, PRE)

Address targets a specific bank and operates command

Command/Address

D
a

ta

Data (DQ)

Command

HBM-PIM: Exploiting bank-level parallelism

Normal

Memory

Space

PIM CONF
PIM-HBM

Mode Register
PIM CRF area

PIM GRF area

Reserved

Memory

Space for

PIM

PIM SRF area

Single / All Bank

Mode Register

PIM

UNIT

PIM

UNIT

BANK

BANK

BANK

BANK

PIM

UNIT

BANK

BANK

PIM

UNIT

BANK

BANK

DRAM die

Buffer die

A command is sent

to multiple banks

in AB mode, and it

toggles PC of PIM units

ABMR 0
ABMR 1
ABMR 8
ABMR 9

SBMR 0
SBMR 1

SB AB AB-PIM

PIM Block

Control area

All Bank (AB-PIM) mode:
• All banks (data) / PIM units are working at the same time by one command (i.e., ACT, WR, RD, PRE)

• Same as AB mode, but PIM unit is only enabled in this mode to prevent unexpected data pollution.

Address targets a specific bank and operates command

Command/Address

D
a

ta

Data (DQ)

Command

HBM-PIM: Exploiting bank-level parallelism

PIM CONF
PIM-HBM

Mode Register
PIM CRF area

PIM GRF area

Reserved

Memory

Space for

PIM

PIM SRF area

Single / All Bank

Mode Register

PIM

UNIT

PIM

UNIT

BANK

BANK

BANK

BANK

PIM

UNIT

BANK

BANK

PIM

UNIT

BANK

BANK

DRAM die

Buffer die

A command is sent

to multiple banks

in AB mode, and it

toggles PC of PIM units

ABMR 0
ABMR 1
ABMR 8
ABMR 9

SBMR 0
SBMR 1

SB AB AB-PIM

PIM Block

Control area

To exit AB-PIM mode and return to AB

mode, need to disable PIM Block

Control Register

Normal

Memory

Space

All Bank (AB-PIM) mode:
• All banks (data) / PIM units are working at the same time by one command (i.e., ACT, WR, RD, PRE)

• Same as AB mode, but PIM unit is only enabled in this mode to prevent unexpected data pollution.

Address targets a specific bank and operates command

Command/Address

D
a

ta

Data (DQ)

Command

HBM-PIM: Exploiting bank-level parallelism

Normal

Memory

Space

PIM CONF
PIM-HBM

Mode Register
PIM CRF area

PIM GRF area

ABMR 0
ABMR 1

PIM SRF area

ABMR 8
ABMR 9

SBMR 0
SBMR 1

PIM Block

Control area

PIM

UNIT

PIM

UNIT

BANK

BANK

BANK

BANK

PIM

UNIT

BANK

BANK

PIM

UNIT

BANK

BANK

DRAM die

Buffer die

A command is sent

to multiple banks

in AB mode,

Single / All Bank

Mode Register

To exit AB mode and

return to SB mode,

Two SBMRs are need to be accessed.

SB AB AB-PIM

Reserved

Memory

Space for

PIM

All Bank (AB) mode:
• All banks (data) / PIM units are working at the same time by one command (i.e., ACT, WR, RD, PRE)

Address targets a specific bank and operates command

Command/Address

D
a

ta

Data (DQ)

Command

Consist of three major components with DRAM local bus interface:
• A 16-lane FP16 SIMD FPU array: a pair of 16 FP16 multipliers and adders

• Register files: Command, General, and Scalar register files (CRF, GRF, and SRF)

• A PIM unit controller (fetch and decode, controls pipeline signals, forward)

HBM-PIM: Microarchitecture

Even Bank Interface

Odd Bank Interface

Control FP16 MULT FP16 ADD

GRF_A

GRF_B

CRF

SRF

Local Bus to Even Bank

Local Bus to Odd Bank

D
e

c
o

d
e

d

C
o
m

m
a

n
d
s

R
o
w

/C
o

l

A
d

d
re

s
s

CRF0 CRF1 CRF2 CRF3

Memory command

(from MC)

CRF PC

PIM

UNIT

BANK

BANK

PIM

UNIT

BANK

BANK

PIM

UNIT

BANK

BANK

PIM

UNIT

BANK

BANK

RD RD RD RDACT
External data (CAS) commands increase

CRF PC and read (write) data from to

column address at the same time.

From this, PIM unit do not interfere timing

parameters.

Five pipeline stages:
• 1) instruction fetch/decode, 2) data fetch, 3) MULT execution, 4) ADD execution, and 5) write back GRF

Arithmetic opcodes:
• MUL, ADD, MAC, MAD

Operands:
• GRF_A, GRF_B, SRF_M (Mult), SRF_A (Add), Even Bank, Odd Bank

HBM-PIM : Microarchitecture

Operand

Matrix

Switch

FP16

Multiplier

Array

GRF_A

GRF_B

SRF_M

Even Bank

Odd Bank

SRC0

SRC1

Operand

Matrix

Switch

FP16

Adder

Array

GRF_A

GRF_B

SRF_A

Even Bank

Odd Bank

SRC0

SRC1

GRF_A / GRF_B

ADD_OUT

MULT_OUT

Data path block diagram of PIM execution unit

GRF_A / GRF_B

ADD_OUT forward for MAC

Five pipeline stages:
• 1) instruction fetch/decode, 2) data fetch, 3) MULT execution, 4) ADD execution, and 5) write back GRF

Arithmetic opcodes:
• MUL, ADD, MAC, MAD

Operands:
• GRF_A, GRF_B, SRF_M (Mult), SRF_A (Add), Even Bank, Odd Bank

HBM-PIM : Microarchitecture

Operand

Matrix

Switch

FP16

Multiplier

Array

GRF_A

GRF_B

SRF_M

Even Bank

Odd Bank

SRC0

SRC1

Operand

Matrix

Switch

FP16

Adder

Array

GRF_A

GRF_B

SRF_A

Even Bank

Odd Bank

SRC0

SRC1

GRF_A / GRF_B

ADD_OUT

MULT_OUT

Data path block diagram of PIM execution unit

GRF_A / GRF_B

ADD_OUT forward for MAC

Acceleration Library

ML Application / Dev Tools

ML Framework

Device Driver

Host Device Driver PIM Device Driver

Tensorflow Core Interface

Backend

PIM custom op

DeepSpeech2 ResNet GNMT

Runtime

BLAS

PIM Runtime

PIM BLAS

PIM Software stack

PIM-direct execution pathNative Execution Path

PIM Preprocessor

PIM Memory Manager

PIM Kernel Executor

Develop software stack allowing existing ML application source code to run w/o any change

Support PIM-direct execution path: a programmer can explicitly call PIM custom TF operations.

PIM Programming Model

PIM programming consists of CRF programming and PIM kernel programming.

The key of PIM kernel programming is
(1) to generate memory requests to the correct addresses
(2) to send them out in the correct order

PIM Kernel

1. Read [BA0, RA0, CA0]

2. Read [BA0, RA0, CA1]

CRF [PC = 0]

PIM Block

Bank

GRF

Bank [RA0, CA0]

GRF[0]

GRF[1]GRF[0] * cell[RA0, CA0]

MUL GRF[1], BANK, GRF[0]

ADD GRF[2], BANK, GRF[1]

CRF [PC = 1]

PIM Block

Bank

GRF

Bank [RA0, CA1]

GRF[1]

GRF[2]GRF[0] + cell[RA0, CA1]

MUL GRF[1], BANK, GRF[0]

ADD GRF[2], BANK, GRF[1]

Implemented PIM by modifying a commercial HBM2 design (Aquabolt). Resulting HBM-PIM
device codenamed Aquabolt-XL

Integrated the fabricated Aquabolt-XL with an unmodified GPU and Xilinx FPGA
• Validated fabricated HBM-PIM in system with unmodified HBM controller

• Off-chip and on-chip PIM compute bandwidth is 1.23 TB/s and 4.92 TB/s, respectively.

Chip Implementation and Integration with systems

Even
PIM
Odd
Even
PIM
Odd

Even
PIM
Odd
Even
PIM
Odd

TSVs & Periphery control block

PC0 PC1 PC2

PC0 PC1 PC2 PC3

PIM DRAM die

PIM block

PIM block area breakdown

FP16

Register Files

Interface

FP16

Implemented PIM by modifying a commercial HBM2 design (Aquabolt). Resulting HBM-PIM
device codenamed Aquabolt-XL

Integrated the fabricated Aquabolt-XL with an unmodified GPU and Xilinx FPGA
• Validated fabricated HBM-PIM in system with unmodified HBM controller

• Off-chip and on-chip PIM compute bandwidth is 1.23 TB/s and 4.92 TB/s, respectively.

Chip Implementation and Integration with systems

HBM

-PIM

Processor

HBM

-PIM

HBM

-PIM

HBM

-PIM

Top view

Bottom view

3D-stacked HBM-PIM HBM-PIM package A processor SiP w/ HBM-PIM

DRAM die

PIM-DRAM die

Buffer die

TSVs

	슬라이드 1: Exploring Processing-in-Memory for memory-bound applications in computing systems
	슬라이드 2: Memory Technology Trends and Challenges
	슬라이드 3: AI system challenges
	슬라이드 4: High Bandwidth Memory, but still need more
	슬라이드 5: PIM: Renewed interest
	슬라이드 6: Challenges in developing commercial PIM
	슬라이드 7: Introduction to HBM-PIM Architecture
	슬라이드 8: Overview of PIM architecture
	슬라이드 9: HBM-PIM: Exploiting bank-level parallelism
	슬라이드 10: HBM-PIM: Exploiting bank-level parallelism
	슬라이드 11: HBM-PIM: Exploiting bank-level parallelism
	슬라이드 12: HBM-PIM: Exploiting bank-level parallelism
	슬라이드 13: HBM-PIM: Exploiting bank-level parallelism
	슬라이드 14: HBM-PIM: Exploiting bank-level parallelism
	슬라이드 15: HBM-PIM: Exploiting bank-level parallelism
	슬라이드 16: HBM-PIM: Microarchitecture
	슬라이드 17: HBM-PIM : Microarchitecture
	슬라이드 18: HBM-PIM : Microarchitecture
	슬라이드 19: PIM Software stack
	슬라이드 20: PIM Programming Model
	슬라이드 21: Chip Implementation and Integration with systems
	슬라이드 22: Chip Implementation and Integration with systems

