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Memory Technology
Trends and Challenges



Memory bandwidth-starved processors (memory-bound application)

High data movement energy from(to) memory

Low memory bandwidth utilization (random, sparsity)

AI system challenges

Source: * Y.-H. Eyeriss, 2016 ISCA
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High Bandwidth Memory, but still need more
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HBM helped breaking the memory wall, but system still requires more bandwidth for emerging applications

High bandwidth memory (HBM) was introduced to provides higher pin density with silicon 
interposer and satisfies the demand for the off-chip memory bandwidth.



Processing-In-Memory (PIM)
• Fill the performance gap and deliver energy-efficient solutions [Hotchips 16, Samsung]

• PIM provides  high ops/second and low power [Survey and Benchmarking of Machine Learning Accelerators]

PIM: Renewed interest
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Challenges in developing commercial PIM

Driven by costs and hegemony struggle among industry stakeholders
• Processor design companies: We don’t have time and resource to change memory subsystems of our 

processors for unproven technologies, especially something that …

• DRAM manufacturers: We don’t want to change DRAM core design for PIM as it has been optimized over 
decades and thus hard and expensive to change

• Customers: We don’t want to change our application code just for PIM. We want homogeneous systems, i.e., 
PIM also need to serve as standard DRAM

Then, we propose PIM architecture without changes on the hosts by keeping current JEDEC 
interface and timing parameters, same memory organization as previous DRAM, and provides full 
software stacks and several applications to prove on a HBM2 based system



Introduction to HBM-PIM Architecture



Overview of PIM architecture

High on-chip compute bandwidth w/o changing DRAM core circuitry
• Place SIMD FPU at bank IO boundary

• Exploit bank-level parallelism: access multiple banks/FPUs in a lockstep manner

Expose high on-chip bandwidth of standard DRAM to processors
• Build on industry standard DRAM interfaces and preserve deterministic DRAM timing

• i.e., a DRAM RD/WR command triggers execution of a PIM instruction
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HBM-PIM: Exploiting bank-level parallelism
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HBM-PIM: Exploiting bank-level parallelism
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HBM-PIM: Exploiting bank-level parallelism
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HBM-PIM: Exploiting bank-level parallelism
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HBM-PIM: Exploiting bank-level parallelism
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Consist of three major components with DRAM local bus interface: 
• A 16-lane FP16 SIMD FPU array: a pair of 16 FP16 multipliers and adders

• Register files: Command, General, and Scalar register files (CRF, GRF, and SRF)

• A PIM unit controller (fetch and decode, controls pipeline signals, forward)

HBM-PIM: Microarchitecture
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Five pipeline stages: 
• 1) instruction fetch/decode, 2) data fetch, 3) MULT execution, 4) ADD execution, and 5) write back GRF

Arithmetic opcodes: 
• MUL, ADD, MAC, MAD

Operands: 
• GRF_A, GRF_B, SRF_M (Mult), SRF_A (Add), Even Bank, Odd Bank

HBM-PIM : Microarchitecture
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Acceleration Library

ML Application / Dev Tools

ML Framework

Device Driver

Host Device Driver PIM Device Driver

Tensorflow Core Interface

Backend

PIM custom op

DeepSpeech2 ResNet GNMT

Runtime

BLAS

PIM Runtime

PIM BLAS

PIM Software stack

PIM-direct execution pathNative Execution Path

PIM Preprocessor

PIM Memory Manager

PIM Kernel Executor

Develop software stack allowing existing ML application source code to run w/o any change

Support PIM-direct execution path: a programmer can explicitly call PIM custom TF operations.



PIM Programming Model

PIM programming consists of CRF programming and PIM kernel programming.

The key of PIM kernel programming is 
(1) to generate memory requests to the correct addresses
(2) to send them out in the correct order

PIM Kernel

1. Read [BA0, RA0, CA0]

2. Read [BA0, RA0, CA1]
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GRF[1]
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Implemented PIM by modifying a commercial HBM2 design (Aquabolt). Resulting HBM-PIM 
device codenamed Aquabolt-XL 

Integrated the fabricated Aquabolt-XL with an unmodified GPU and Xilinx FPGA
• Validated fabricated HBM-PIM in system with unmodified HBM controller

• Off-chip and on-chip PIM compute bandwidth is 1.23 TB/s and 4.92 TB/s, respectively.

Chip Implementation and Integration with systems
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