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• Background and Motivation

o What are Graph Neural Networks (GNNs)?

o Why accelerate GNNs?

• Existing Accelerator Limitations

o Not generic, not real-time

• Generic and Parallelized GNN Accelerator

o Generic message passing framework — GenGNN

o Node-level and edge-level parallelism

• Evaluation: CPU/GPU
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• Traditional neural networks are designed for simple sequences & grids
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What are Graph Neural Networks (GNNs)?

[Slide credit: http://web.stanford.edu/class/cs224w]

Speech/Text
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• Reality: A lot of real-world data does not “live” on grids
o Arbitrary size and complex topological structure 
o No fixed node ordering or reference point
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What are Graph Neural Networks (GNNs)?

Image credit: Madhavicmu / 
Wikimedia Commons/CC-BY-SA-4.0

Social Networks Economic Networks Protein Interaction Networks
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What are Graph Neural Networks (GNNs)?

[Slide credit: Structured deep models: Deep learning on graphs and beyond]

• Mainstream: Pass messages between pairs of nodes, aggregate, and transform
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What are Graph Neural Networks (GNNs)?

• Mainstream: Pass messages between pairs of nodes, aggregate, and transform

[Slide credit: Structured deep models: Deep learning on graphs and beyond]
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• Numerous applications; many require real-time processing
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Why Accelerate GNNs?

Zhou, Jie, et al. "Graph neural networks: A review of methods and applications." AI Open, 2020

• Code Analysis 

• Automated HW/SW 
Co-Design

• Scene Graph 
Understanding

• Smart EDA Tools

Low
• Transportation and Traffic 

Forecasting

• Social Network Analysis

• Recommender Systems

• Molecule Generation and Drug 
Discover

• Health Records Modeling

• Biological Networks and 
Pathways

Medium

• LiDAR and Point 
Cloud Data for 
Autonomous 
Driving

• High Energy 
Physics

• Fraud and spam 
detection

High
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[image source] Shi, Weijing, and 
Raj Rajkumar. "Point-gnn: 
Graph neural network for 3d 
object detection in a point 
cloud.“ CVPR 2020

[image source] https://www.quantamagazine.org/growing-
anomalies-at-the-large-hadron-collider-hint-at-new-
particles-20200526/
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• Background and Motivation

o What are Graph Neural Networks (GNNs)?

o Why accelerate GNNs?

• Existing Accelerator Limitations

o Not generic, not real-time

• Generic and Parallelized GNN Accelerator

o Generic message passing framework — GenGNN

o Node-level and edge-level parallelism

• Evaluation: CPU/GPU
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Existing Work

Most focus on Graph 
Convolution Network 
(GCN): A limited type

Heavy pre-processing: 
Not suitable for real-time

Most on ASIC via 
simulation: not end-to-

end, far from practical
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Existing Work vs. Ours

Support a wide range of 
GNNs: Generic

No pre-processing: 
Real-time oriented

Evaluated end-to-end on 
FPGA

Most focus on Graph 
Convolution Network 
(GCN): A limited type

Heavy pre-processing: 
Not suitable for real-time

Most on ASIC via 
simulation: not end-to-

end, far from practical
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Message Passing in GNNs
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Architecture to Support Message Passing

Message Buffer 1

Size: O(N)

Node 
Embedding 

Buffer

Size: O(N)

Node Embedding 
(NE)

• Multi-layer 
Perceptron

• Activation
• Self-attention

Node 𝒏𝟓’s 
Embedding

Node 𝒏𝟓’s aggregated 
message

Message Buffer 2

Size: O(N)

Message Passing (MP)

• Scattering while aggregating
• No Gathering needed

Node 
Queue

Partial messages 
for nodes in 𝓟

CSR Table

*Fixed within one layer compute *Keep updating

𝒏𝟐
𝒏𝟑
𝒏𝟒

𝒏𝟏’s out-
neighbor list 𝓟

𝒏𝟏

𝒏𝟏

Switch between layers

Node by node

Overall Architecture of GenGNN (layer-recursive)

Different GNNs:
GCN, GIN, PNA, DGN, GAT, …
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Node 𝒏𝟓’s 
Embedding
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Streaming-based Pipelining
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Streaming-based Pipelining

NE: Node Embedding
MP: Message Passing

∼ Wasted idle cycles

∼
∼

∼
∼

∼

In-queue

Node queue for message passing

∼

NE

MP

NE

MP

NE

MP

Latency reduction 
by streaming-
based pipelining

Latency reduction 
by fixed pipelining



Rishov Sarkar | Sharc Lab @ Georgia Institute of Technology 18

GenGNN Limitation

NE: Node Embedding
MP: Message Passing

∼ Wasted idle cycles

∼
∼

∼
∼

∼

In-queue

∼

NE

MP

NE

MP

Latency reduction 
by streaming-
based pipelining

Latency reduction 
by fixed pipelining

Node queue for message passing

NE

MP

NE stage processes nodes one at a time
MP stage processes edges one at a time
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• Background and Motivation
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• Evaluation: CPU/GPU
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Parallelized Architecture

Four key components:
• Partitioned message buffers
• Multi-node NE PE

o Shares weights between multiple nodes

• NE-to-MP adapter
o Broadcasts node embeddings

• Independent MP PEs
o Each handles edges to a subset of nodes

‐ PEs never need to access same partition of 
message buffer

o Filter → duplicate → scatter dataflow makes 
loops predictable, minimizing overhead

Node Embedding (NE)

NE Compute Unit 1
MLP, activation, attention, etc.

Loading Shared Weights

NE-to-MP Adapter
Re-batches and broadcasts NE outputs

Message 
Passing (MP) 

PE 1

Duplicate

Filter

Scatter

32 bits 32 bits

128 bits 128 bits

Message Buffer 1
Partitioned per MP PE

Message Buffer 2
Partitioned per MP PE

NE Compute Unit 2
MLP, activation, attention, etc.

Message 
Passing (MP) 

PE 4

Duplicate

Filter

Scatter

Message 
Passing (MP) 

PE 2

Duplicate

Filter

Scatter

Message 
Passing (MP) 

PE 3

Duplicate

Filter

Scatter
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Node-Level Parallelism

Four key components:
• Partitioned message buffers
• Multi-node NE PE

o Shares weights between multiple nodes

• NE-to-MP adapter
o Broadcasts node embeddings

• Independent MP PEs
o Each handles edges to a subset of nodes

‐ PEs never need to access same partition of 
message buffer

o Filter → duplicate → scatter dataflow makes 
loops predictable, minimizing overhead
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Message 
Passing (MP) 
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Scatter
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Passing (MP) 

PE 2

Duplicate

Filter

Scatter

Message 
Passing (MP) 

PE 3

Duplicate

Filter

Scatter
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Edge-Level Parallelism

Four key components:
• Partitioned message buffers
• Multi-node NE PE

o Shares weights between multiple nodes

• NE-to-MP adapter
o Broadcasts node embeddings

• Independent MP PEs
o Each handles edges to a subset of nodes

‐ PEs never need to access same partition of 
message buffer

o Filter → duplicate → scatter dataflow makes 
loops predictable, minimizing overhead

Node Embedding (NE)

NE Compute Unit 1
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• Example: two message passing PEs
o PE 1 handles red nodes
o PE 2 handles blue node

• We’ll follow node 1’s embedding

23

Filter →Duplicate→ Scatter Dataflow

1

2

3

4

NE-to-MP Adapter
Re-batches and broadcasts NE outputs

Message Passing (MP) PE 1

Duplicate

Filter

Scatter

Message Passing (MP) PE 2

Duplicate

Filter

Scatter

Message Buffer
Partitioned per MP PE2 3 4
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• Adapter accepts node embedding and 
broadcasts to all MP PEs
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Filter →Duplicate→ Scatter Dataflow

NE-to-MP Adapter
Re-batches and broadcasts NE outputs

Message Passing (MP) PE 1

Duplicate

Filter

Scatter

Message Passing (MP) PE 2

Duplicate

Filter

Scatter

Message Buffer
Partitioned per MP PE

11

1

2

3

4
2 3 4
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• Adapter accepts node embedding and 
broadcasts to all MP PEs

• Each PE checks if it needs this node 
embedding
o PE 1 checks for edges from node 1

to a red node
o PE 2 checks for edges from node 1

to a blue node
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Filter →Duplicate→ Scatter Dataflow

NE-to-MP Adapter
Re-batches and broadcasts NE outputs

Message Passing (MP) PE 1

Duplicate

Filter

Scatter

Message Passing (MP) PE 2

Duplicate

Filter

Scatter

Message Buffer
Partitioned per MP PE

1 1

1

2

3

4
2 3 4
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• Adapter accepts node embedding and 
broadcasts to all MP PEs

• Each PE checks if it needs this node 
embedding

• Node embedding is duplicated once
for each edge to scatter
o PE 1 duplicates node 1 twice:

‐ Once for 1→ 2
‐ Once for 1→ 3
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Filter →Duplicate→ Scatter Dataflow

NE-to-MP Adapter
Re-batches and broadcasts NE outputs

Message Passing (MP) PE 1

Duplicate

Filter

Scatter

Message Passing (MP) PE 2

Duplicate

Filter

Scatter

Message Buffer
Partitioned per MP PE

1

2

3

4
2 3 4

11
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• Adapter accepts node embedding and 
broadcasts to all MP PEs

• Each PE checks if it needs this node 
embedding

• Node embedding is duplicated once
for each edge to scatter

Predictable loop behavior
→minimal loop overhead

o Filter: once per node
o Duplicate: once per edge (for PE)
o Scatter: once per edge (for PE)
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Filter →Duplicate→ Scatter Dataflow

NE-to-MP Adapter
Re-batches and broadcasts NE outputs

Message Passing (MP) PE 1

Duplicate

Filter

Scatter

Message Passing (MP) PE 2

Duplicate

Filter

Scatter

Message Buffer
Partitioned per MP PE

1

2

3

4
2 3 4
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• Background and Motivation

o What are Graph Neural Networks (GNNs)?

o Why accelerating GNNs?

• Existing Accelerator Limitations

o Not generic, not real-time

• Ours: Generic GNN Accelerator – GenGNN

o Generic message passing framework

o Model-specific components

• Evaluation: CPU/GPU
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Experiment Setup

• Representative model: Directional Graph Network (DGN)
• Xilinx Alveo U50 Acceleration Board
• Dataset: MolHIV (molecule classification); 4k graphs

Compute Resources

Look-up Tables (LUTs) 872K

Registers 1,743K

DSP Slices 5,952
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Evaluation

• Baseline: CPU/GPU (batchsize = 1)
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Evaluation

• Baseline: CPU/GPU (batchsize = 1)

• Primarily limited by kernel start/stop overhead (93% of inference latency)
o Comparing only time spent on computation, this work achieves nearly 12x speedup over GenGNN
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• Reducing overhead for higher throughput
o Opportunity for up to 14x speedup

• Design automation and design space exploration
o E.g., automatically determine best number of PEs for a dataset

• Optimization for large graphs
o Enable ultra-fast inference for graphs that do not fit on-chip
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Future Directions
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• Graph Neural Networks (GNNs) require acceleration and 
real-time processing
o Not all GNNs are sparse matrix multiplications (only few of them are)

• Our contribution: a generic and parallelized GNN 
acceleration framework on FPGA
o Generic: supports a wide range of GNN models
o Real-time: no pre-processing
o Verified: evaluated end-to-end on FPGA

• Beats GPU, CPU, and our previous work, GenGNN
o 24x speedup over CPU
o 45x speedup over GPU
o 1.7x speedup over GenGNN
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Summary & Thanks!

Contact:
rishov.sarkar@gatech.edu

Sharc Lab @ Georgia Tech 
(https://sharclab.ece.gatech.e
du/)
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