
A Generic FPGA Accelerator Framework for Ultra-Fast
GNN Inference
Rishov Sarkar, Cong Hao

Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, USA
rishov.sarkar@gatech.edu, callie.hao@ece.gatech.edu

1 Introduction
Graph structures are prevalent in real-world data and of-
ten uncover learnable tasks at the node level (e.g., presence
of protein [1]), edge level (e.g., drug-drug interactions [2]),
and graph level (e.g., molecular property prediction [3]).
Graph neural networks (GNNs) are the solution to apply
deep learning to graph-related problems such as analysis
of social networks and citation networks, recommendation
systems, traffic forecasting, LIDAR point cloud segmentation
for autonomous driving, high-energy particle physics, and
molecular representations [4].
Real-time applications such as high-energy physics de-

mand high-throughput, low-latency GNN inference of thou-
sands of graphs. Achieving state-of-the-art accuracy in such
applications motivates the need for a generic, extensible, and
flexible acceleration framework that can easily be adapted to
anymessage-passing GNNwithout compromising on latency.
Our previous work, GenGNN [5], presents our initial effort
on a generic acceleration framework, but it overlooks more
advanced optimization opportunities, the most promising of
which is parallelization of node and edge computations.

Therefore, in this work, we introduce the generic archi-
tecture of GenGNN and present further optimizations upon
it that reduce the latency of GenGNN by up to 42%.

2 Related Work
GNN acceleration is attracting intensive attention in the
research community. Recent works are summarized by a sur-
vey [6], which includes both ASIC and FPGA accelerators.

The majority of existing accelerators target ASICs in sim-
ulation. For instance, HyGCN [7] is among the earliest of
these, which introduces a hybrid architecture for GCN accel-
eration. EnGN [8] uses PEs connected in a ring and performs
aggregations using a technique called Ring-Edge Reduce,
while GRIP [9] uses the GReTA abstraction [10] to enable
acceleration of any GNN variant. GCNAX [11] addresses
the shortcomings of resource underutilization and excessive
data movement using a flexible dataflow.
On the other hand, FPGA-based accelerators primarily

focus on GCN acceleration. AWB-GCN [12] is an FPGA ac-
celerator that aims to combat workload imbalance in graph
processing. Zhang et al. [13] combine software preprocessing
with hardware utilizing both node-level and feature-level par-
allelism, while BoostGCN [14] specifically optimizes GCN via
sparsity analysis and graph partitioning. I-GCN [15] uses an

N
o

d
e

 Em
b

e
d

d
in

g
M

e
ssage

 P
assin

g

= 𝜙 ,

𝑛1 𝑛2

𝑛3

𝑒1→3
𝑙

𝒜 −,… ,− = 𝑚3
𝑙

❷ Aggregate incoming messages for each node

❶ Send messages along all edges
based on node and edge embeddings

𝑥1
𝑙

𝛾 ,𝑚3
𝑙 = 𝑥3

𝑙+1𝑥3
𝑙

❸ Use each node’s
current embedding

and aggregated
messages to get next

layer node embedding

Figure 1. The general computation pattern of a message-
passing GNN (one layer).

islandization approach to de-duplicate redundant GCN com-
putations. Auten et al. [16] propose an architecture that uses
general-purpose CPUs connected by a network-on-chip to ac-
celerate various GNNs. Rubik [17] and GraphACT [18] aim to
accelerate GCN training using ASIC and FPGA, respectively.

2.1 Prior Art Limitations
Most prior FPGA-based GNN accelerators have been devel-
oped to accelerate models such as Graph Convolutional Net-
works (GCN) whose computation can be reduced to sparse-
matrix/matrix multiplication (SpMM), but many GNN mod-
els are not reducible this way. For instance, the Principal
Neighborhood Aggregation (PNA) model achieves state-of-
the-art performance on many node-level and graph-level
benchmarks [19], but it makes use of complex computations
such as min, max, and standard deviation that cannot be com-
puted using SpMM. Instead, the general behavior of GNN
models can be represented as layers of message-passing op-
erations, combined with transform and aggregate operations
[20].

In addition, many of these accelerators also adopt off-chip
preprocessing such as graph partitioning, which in real-time
applications is not possible.

3 Generic and Parallelized Message-Passing
3.1 Generic Message Passing — GenGNN
The message-passing computation paradigm accommodates
the widest range of GNN models. The general computation
of each layer of a message-passing GNN is shown in Figure 1.

mailto:rishov.sarkar@gatech.edu
mailto:callie.hao@ece.gatech.edu

Rishov Sarkar, Cong Hao

Node Embedding (NE)

NE Compute Unit 1
MLP, activation, attention, etc.

Loading Shared Weights

NE-to-MP Adapter
Re-batches and broadcasts NE outputs

Message
Passing (MP)

PE 1

Duplicate

Filter

Scatter

32 bits 32 bits

128 bits 128 bits

Message Buffer 1
Partitioned per MP PE

Message Buffer 2
Partitioned per MP PE

NE Compute Unit 2
MLP, activation, attention, etc.

Message
Passing (MP)

PE 4

Duplicate

Filter

Scatter

Message
Passing (MP)

PE 2

Duplicate

Filter

Scatter

Message
Passing (MP)

PE 3

Duplicate

Filter

Scatter

Figure 2. Our architecture for node-level and edge-level
parallelism in each GNN layer. This example demonstrates
2× node-level parallelism and 4× edge-level parallelism.

Each layer can be interpreted as two interdependent steps:
a Message-Passing (MP) step involving computations across
all neighbors of each node and a Node Embedding (NE) step
that updates each node’s embedding using the aggregated
messages computed in the MP step. Different GNN models
are distinguished by different choices for the aggregation
function A(·) and the node transformation function 𝛾 (·).

GenGNN’s architecture follows the message-passing style.
It consists of two main Processing Elements (PEs), NE and
MP, connected by a node queue. The node queue enables a
novel streaming-based pipelined processing paradigm that
overlaps NE and MP and minimizes idle time in both PEs.
However, although GenGNN overlaps the computation

of the two stages, each is limited to sequential processing;
NE can only perform one node transformation at any given
time, and MP can only perform aggregations one edge at a
time. Our latest work addresses this using both node-level
parallelism in NE and edge-level parallelism in MP.

The architecture of our node-level and edge-level parallel
PEs are shown in Figure 2. Section 3.2 describes the imple-
mentation of the parallel NE PE, and section 3.3 describes
the implementation of the parallel MP PEs.

3.2 Node-Level Parallelism in Node Embedding PE
To implement node-level parallelism by a factor of 𝑃𝑁 , we
expand our Node Embedding PE to support simultaneous
computation of 𝑃𝑁 node transformations. Input messages are

Accelerator DSP LUT FF BRAM URAM

Available 5,952 872K 1,743K 1,344
(47 Mb)

640
(180 Mb)

GenGNN 1,042 73,735 93,579 523 0
This work 1,559 202,763 167,044 462 0

Table 1. Resource utilization of the DGN model [21] on the
Xilinx Alveo U50 FPGA. The clock frequency is 300 MHz.

read 𝑃𝑁 nodes at a time, and transformed node embeddings
are output simultaneously via 𝑃𝑁 parallel FIFO streams. Any
weights needed for the node transformation are loaded only
once and reused for the 𝑃𝑁 nodes being processed in parallel.

3.3 Edge-Level Parallelism in Message Passing PEs
To implement edge-level parallelism by a factor of 𝑃𝐸 , we cre-
ate 𝑃𝐸 separate Message Passing PEs, each handling a subset
𝐸𝑖 of the edges of the entire graph—specifically, only edges
directed to the corresponding partition of the message buffer.
Each MP PE is constructed as a dataflow accepting 𝑃𝑁

input streams from the NE PE. The “filter” process discards
nodes with no outgoing edges within 𝐸𝑖 . Next, the “dupli-
cate” process repeats each node’s embedding once for each
of its outgoing edges in 𝐸𝑖 , resulting in a total of |𝐸𝑖 | node
embeddings. Finally, the “scatter” process performs the GNN-
specific aggregation for each edge, taking as input the trans-
formed node embedding for the source node of each edge.

This dataflow within each PE makes the loop behavior of
each process predictable, thereby reducing loop overhead,
and ensures each process is limited only by its input rate.

4 Evaluation and Results
We select the Directional Graph Network (DGN) [21] as a
representative model for evaluation of our FPGA framework,
and we evaluate its performance using the MolHIV dataset
from the Open Graph Benchmark [22], a binary classification
dataset with 41,127 graphs averaging 25.5 nodes and 27.5
edges each. We compare the inference latency of our DGN
model on a Xilinx Alveo U50 FPGA against a PyTorch-based
implementation running on CPU (Intel Xeon Gold 6226R)

CPU (PyG) GPU (PyG) GenGNN This work
0

5

10

15

Av
g.

 la
te

nc
y

(m
s/

gr
ap

h)

8.3774

15.7075

0.6052 0.3472

~CPU: 13.84x
~GPU: 25.96x

~CPU: 24.13x
~GPU: 45.24x
~GenGNN: 1.74x

Figure 3. Average inference latency of the DGN model [21]
on the MolHIV dataset [22] across several platforms.

A Generic FPGA Accelerator Framework for Ultra-Fast GNN Inference

and GPU (NVIDIA RTX A6000). FPGA resource utilization is
shown in Table 1. All models are evaluated with batch size 1.
Results are shown in Figure 3. First, GenGNN achieves a

speedup of 13.84× over the CPU and 25.96× over the GPU
baseline; second, using the edge and node parallelization
technique proposed in this work, we achieve another 1.74×
speedup over GenGNN, with 2× node-level parallelism and
4× edge-level parallelism; it results in a speedup of 22.39×
over CPU and 41.97× over GPU.
In this parallelized architecture, the vast majority of the

inference latency can be attributed to pure overhead from
starting and stopping the kernel on the FPGA. We evaluated
the latency of a no-compute kernel, i.e., one which does noth-
ing except return a fixed result, and found that it takes an
average of 0.3232 ms per graph. Subtracting this latency from
the overall inference latency, we find that in GenGNN, the
time spent performing GNN computation averages 0.2820ms,
while our latest work with parallelization reduces this aver-
age to only 0.0240 ms per graph. That is, when comparing
only the time spent on GNN computation, our current archi-
tecture achieves a speedup of nearly 12× over GenGNN.

5 Conclusion
In this work, we proposed a version of GenGNN enhanced
with node-level and edge-level parallelism. The architecture
is flexible enough to accommodate any message-passing
GNN yet performant enough to beat state-of-the-art latency.

The most significant opportunity for future optimization
is to reduce the kernel start/stop overhead, which will enable
inference speeds as low as tens of microseconds per graph.
Future work includes design automation, design space

exploration, and optimization for large graphs.

References
[1] D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-

Cepas, M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork, L. J.
Jensen, and C. v. Mering, “STRING v11: Protein–protein association
networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets,” Nucleic Acids Research, vol. 47,
pp. D607–D613, Jan. 2019.

[2] D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant,
T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran,
Y. Liu, A. Maciejewski, N. Gale, A. Wilson, L. Chin, R. Cummings,
D. Le, A. Pon, C. Knox, and M. Wilson, “DrugBank 5.0: A major
update to the DrugBank database for 2018,” Nucleic Acids Research,
vol. 46, pp. D1074–D1082, Jan. 2018.

[3] Z.Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu,
K. Leswing, and V. Pande, “MoleculeNet: A benchmark for molecular
machine learning,” Chemical Science, vol. 9, no. 2, pp. 513–530, 2018.

[4] K. Atz, F. Grisoni, and G. Schneider, “Geometric deep learning
on molecular representations,” Nature Machine Intelligence, vol. 3,
pp. 1023–1032, Dec. 2021.

[5] S. Abi-Karam, Y. He, R. Sarkar, L. Sathidevi, Z. Qiao, and C. Hao,
“GenGNN: A generic FPGA framework for graph neural network
acceleration,” arXiv:2201.08475 [cs], Jan. 2022.

[6] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón,
“Computing graph neural networks: A survey from algorithms to

accelerators,” ACM Computing Surveys, vol. 54, pp. 1–38, Dec. 2022.
[7] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,

and Y. Xie, “HyGCN: A GCN accelerator with hybrid architecture,”
in 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), (San Diego, CA, USA), pp. 15–29, IEEE, Feb. 2020.

[8] S. Liang, Y. Wang, C. Liu, L. He, H. Li, D. Xu, and X. Li, “EnGN:
A high-throughput and energy-efficient accelerator for large
graph neural networks,” IEEE Transactions on Computers, vol. 70,
pp. 1511–1525, Sept. 2021.

[9] K. Kiningham, C. Re, and P. Levis, “GRIP: A graph neural network
accelerator architecture,” arXiv:2007.13828 [cs], July 2020.

[10] K. Kiningham, P. Levis, and C. Ré, “GReTA: Hardware optimized
graph processing for GNNs,” in Proceedings of the Workshop on
Resource-Constrained Machine Learning (ReCoML 2020), Mar. 2020.

[11] J. Li, A. Louri, A. Karanth, and R. Bunescu, “GCNAX: A flexible and
energy-efficient accelerator for graph convolutional neural networks,”
in 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), (Seoul, Korea (South)), pp. 775–788, IEEE, Feb.
2021.

[12] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo, S. Che,
S. Reinhardt, and M. C. Herbordt, “AWB-GCN: A graph convolutional
network accelerator with runtime workload rebalancing,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), (Athens, Greece), pp. 922–936, IEEE, Oct. 2020.

[13] B. Zhang, H. Zeng, and V. Prasanna, “Hardware acceleration of large
scale GCN inference,” in 2020 IEEE 31st International Conference on
Application-specific Systems, Architectures and Processors (ASAP),
(Manchester, United Kingdom), pp. 61–68, IEEE, July 2020.

[14] B. Zhang, R. Kannan, and V. Prasanna, “BoostGCN: A framework
for optimizing GCN inference on FPGA,” in 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), (Orlando, FL, USA), pp. 29–39, IEEE, May 2021.

[15] T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, M. Herbordt, Y. Lin,
and A. Li, “I-GCN: A graph convolutional network accelerator with
runtime locality enhancement through islandization,” in MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture,
(Virtual Event Greece), pp. 1051–1063, ACM, Oct. 2021.

[16] A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of
graph neural networks,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), (San Francisco, CA, USA), pp. 1–6, IEEE, July 2020.

[17] X. Chen, Y. Wang, X. Xie, X. Hu, A. Basak, L. Liang, M. Yan, L. Deng,
Y. Ding, Z. Du, and Y. Xie, “Rubik: A hierarchical architecture
for efficient graph neural network training,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
pp. 936–949, Apr. 2022.

[18] H. Zeng and V. Prasanna, “GraphACT: Accelerating GCN training
on CPU-FPGA heterogeneous platforms,” in Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, (Seaside CA USA), pp. 255–265, ACM, Feb. 2020.

[19] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković, “Principal
neighbourhood aggregation for graph nets,” in Advances in Neural
Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, eds.), vol. 33, pp. 13260–13271, Curran
Associates, Inc., 2020.

[20] P. Veličković, “Message passing all the way up,” arXiv:2202.11097 [cs,
stat], Feb. 2022.

[21] D. Beaini, S. Passaro, V. Létourneau, W. Hamilton, G. Corso, and P. Lió,
“Directional graph networks,” in Proceedings of the 38th International
Conference on Machine Learning, pp. 748–758, PMLR, July 2021.

[22] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning
on graphs,” in Advances in Neural Information Processing Systems
(H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds.),
vol. 33, pp. 22118–22133, Curran Associates, Inc., 2020.

	1 Introduction
	2 Related Work
	2.1 Prior Art Limitations

	3 Generic and Parallelized Message-Passing
	3.1 Generic Message Passing — GenGNN
	3.2 Node-Level Parallelism in Node Embedding PE
	3.3 Edge-Level Parallelism in Message Passing PEs

	4 Evaluation and Results
	5 Conclusion
	References

