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Background & Motivation

Challenges for object detection on embedded systems with DNNs
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Deep Neural
Networks
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/ Challenges \

* Limited computing and
memory resources

» Tight energy budget
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Background & Motivation

Redundant computation: a large part of an image is background and it

IS unnecessary to focus on these regions.
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[1] Xiaowei Xu, Xinyi Zhang, Bei Yu, X Sharon Hu, Christopher Rowen, Jingtong Hu, and Yiyu Shi. Dac-sdc low power object detection challenge for uav

applications. IEEE transactions on pattern analysis and machine intelligence, 2019.
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feature maps

Faster R-CNN[ is a single, unified network for
object detection. The RPN module serves as the
‘attention’ of this unified network.
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The Mask-RCNNI? framework for instance
segmentation and its extension

Mask-RCNN

Computationally expensive: needs deep
convolution layers to extract enough features

No rectangular regions: not beneficial for
hardware acceleration

[1] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems 28 (2015): 91-99.
[2] He, Kaiming, et al. "Mask r-cnn." Proceedings of the IEEE international conference on computer vision. 2017.



Related Work : Cascade

» A famous example: Cascade R-CNN

Pros Cons

> Non hardware efficient: has many branches.
» Higher quality detectors are only required to | > Unsuitable for edge devices: fits better in
operate on higher quality hypotheses. dense DNNs instead of lightweight DNNs.

i

(a) Faster R-CNN (b) Iterative BBox at inference (c) Integral Loss (d) Cascade R-CNN
Figure 3. The architectures of different frameworks. “I"" is input image, “conv” backbone convolutions, “pool” region-wise feature extrac-
tion, “H” network head, “B” bounding box, and “C” classification. “B0” is proposals in all architectures.

I

Four common cascade network in object detection

Cai, Zhaowei, and Nuno Vasconcelos. "Cascade r-cnn: Delving into high quality object detection." Proceedings of the

Image credit: IEEE conference on computer vision and pattern recognition. 2018.
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The architecture of Mask-Net

layers after new branch

layers before new branch dynamic convolution with mask
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The architecture of Mask-Net

input image

layers before new branch

layers after new branch
dynamic convolution with mask

' 4

Shared by new branch and backbone
to extract preliminary features

- new branch
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output image

regular shape mask
( proposed region is green )
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The architecture of Mask-Net

layers before new branch

input image

layers after new branch

e,

Generate a mask with proposed regions
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regular shape mask

dynamic convolution with mask

output image

gate ( proposed region is green )
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The architecture of Mask-Net

layers before new branch

input image

layers after new branch
dynamic convolution with mask

- new branch
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output image

regular shape mask
( proposed region is green )

Only compute the proposed
regions to generate bounding box
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A case study: Mask-SkyNet

SkyNet!! is a hardware-efficient object detection and tracking backbone.
We choose SkyNet as base model to design a FPGA accelerator.

Bypass the feature map
after reordering
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Mask-SkyNet architecture

[1] Xiaofan Zhang, Haoming Lu, Cong Hao, Jiachen Li, Bowen Cheng, Yuhong Li, Kyle Rupnow, Jinjun Xiong, Thomas Huang, Honghui Shi, et al. Skynet: a
hardware-efficient method for object detection and tracking on embedded systems. Proceedings of Machine Learning and Systems, 2:216-229, 2020.
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Promising features of Mask-Net

 Small Overhead

« The mask generation branch’s computation cost is about 6% of the whole
network.
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Promising features of Mask-Net

« Hardware friendly

» The mask generation branch can reuse convolution modules in the
backbone.

» Mask shape regularization can help avoid complex control logic.

» Channel shuffle can help reduce data movement between DRAM and
on-chip memory.
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Promising features of Mask-Net

e Generalizable

« Can be applied to different object detection or tracking backbones,
including SkyNet, UltraNet and ResNet-18.

» Works well in different scenarios, including DAC-SDC, UAV123 and
OTB100 dataset.
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Algorithm Innovations

» Confidence mask and regions of interest generation
* The confidence mask is generated by Sigmoid.
» The patch’s score in the mask is proportional to the probability of objects

)
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Algorithm Innovations

* All pass mechanism

« Two-stage training process

* |f the score of all patches does not exceed the threshold, then we need to

calculate the whole image to improve the robustness of mask generation.

» The first step is to fix the weights in the backbone and only train the new branch.
« The second step is to fix the weights of the new branch and fine-tune the
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Hardware Innovations

* Region of Interest Shape Regularization

» Our FPGA accelerator is tile-based. If the shape of regions of interest is not
rectangular, additional judgement is needed before loading and calculating
the tile.

» Regularize the shape of regions of interest in the mask into rectangular will
avoid the complex control logic introduced by the judgement of patches’
score.
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Hardware Innovations

e Channel shuffle

« Reduce data movement between DRAM and on-chip memory to reduce
computation cost.

* Our channel shuffle method is the inverse process of that in ShuffleNet.

j=—Channels————> [ Channels

6 channels 6 Channels | |

L J \ J L J L
| | T 1

32 channel 32 channels 32 channels 32 channels 32 channels 32 channels

4

Total 192 channels

TN — i : Ch I
- — e

IlIIIIIIHII | | |

Channel shuffle in Mask-Net Channel shuffle in ShuffleNet!]

[1] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional neural network for mobile
devices. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6848-6856, 2018.
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« Experiment results

22



Experiment Results

» Mask shape and threshold study

« We study the impact of different mask shapes on Mask-SkyNet performance.
We choose threshold from 0-1 and different mask shapes including 4 x 4, 5
X 5,4 x 8and 5 x 10. The experiment is done on DAC-SDC dataset.
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Experiment Results

« Mask quality
* The experiment is done using Mask-SkyNet on DAC-SDC dataset.

» 84.3% of proposed regions can completely cover the object while only 1.2%
are completely wrong.

» Masked region proposals will only cause 5%~6% loU loss.

P cover
1. 2% intersect

14. 5% i I error before FT  after FT
ground truth mask 0.7009 0.7249
mask generated 0.6654 0.6824

TABLE I: IoU after applying ground truth and generated masks.
The results are from software and both weights and feature
84, 3% maps are float32. FT means fine-tuning.

Mask quality analysis loU loss comparison
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Experiment Results

 C/RTL co-simulation results

« Only 6% of total inference time allows the network to correctly distinguish

between objects and background.

SkyNet
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Experiment Results

« Software and hardware evaluation results

« At software level, we evaluate Mask-Net using three detection backbones: SkyNet,
UltraNet and ResNet-18 and three datasets: DAC-SDC, OTB100 and UAV123. The
weights and feature maps are 32-bit.

« At hardware level, we use the same datasets to test our Mask-SkyNet accelerator
on ZCU106 FPGA. The weights are 11 bits and feature maps are 9 bits.

Backbone Dataset IoU without mask | IoU with mask | IoU Loss | Speedup ROI New Branch Overhead
DAC-SDC 0.7192 0.6824 5.12% 2.29x 19.4% _ LUT FF BRAM DSP
SkyNet OTBI00 0.8331 0.7997 1.01% [.O9x | 28.8% 0.83% Available 230,400 460,800 312 1.728
UAVI23 0.7633 0.7238 5.42% 2.15% 23.2% Mask-SkyNet 69,960 70,548 209 416
DAC-SDC 0.5840 0.5552 4.93% 2.18x 200.0% SkyNel 49,554 58.203 209 329
ResNet-18 OTBI100 0.8214 0.8027 2.28% 1.84x 32.6% 0.28%
UAVI23 0.6978 .6690 4.13% 2.13x 21.7%
DAC-SDC 06112 0.5538 9.39% 1.78x 24.3% HH :
UltraNet OTB100 0.7845 0.7327 6.60% 1.66x 31.2% 1.30% Resource Utlllzatlon report
UAVI23 0.6602 0.6276 4.94% 1.64dx 32.1%

Software evaluation results

Dataset Frequency FPS Energy per 1000 frames | Speedup | Energy Reduction
214 MHz 34.24 5.08] 1.35x 32.3%
DAC-SDC 166 MHz 38.10 747 1.35% 33.2%
124 MHz 31.18 8.611 1.37x 32.8% 73 Of the 87 DSPS
214 MHz 32.62 8.45]) 1.30x 29.3%
OTBI00 [ T66 MHz | 3634 7851 28 5% added come from the
124 MHz 29.62 9.29] 1.30x 27.0%
214 MHz | 31.80 8.76] 1.27x 29.1% new branCh
UAV123 166 MHz 35.33 8.16] 1.39x 32.8%
124 MHz 28.96 9.351 1.31x 30.1%

Hardware evaluation results
26



Overview

» Design space exploration
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Design Space Exploration

e Reasons for DSE

* The time imbalance between different parts of the accelerator will affect the
overall performance.

« We want to optimally allocating DSPs to different parts of the accelerator to
balance the computations under a fixed number of DSPs.

« DSE model

 The model is used to calculate the theoretical speedup under fixed number
of DSPs after DSP redistribution.

N N> Nt
T, = 2 xt _Post ¢ b o« ¢
m Npre mpre + Npost mpost + Nb nb .
Ntotal:NpTe_l_Npost_l_Nb N* N* . T:T_
T=-2C°xt A &
Npre pre + Npost post m
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Design Space Exploration Results
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e Future research directions
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Future Research Directions

» Adaptive threshold

« The threshold used in the gate in Mask-Net now is empirically selected from
experiment results.

« Adaptive threshold may select region proposals more efficiently, further
reduce the computation cost, especially in case of complex background.

« Extend Mask-Net to different tasks
 Object tracking
« Image classification
* Instance segmentation
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