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Abstract—Object detection on embedded systems is challenging
because it is hard to achieve real-time inference with low energy
consumption and limited hardware resources. Another challenge
for low-latency and energy-efficient object detection on embedded
systems is to find hardware-friendly methods to avoid redundant
computation. To address these challenges, in this work, we propose
Mask-Net, a hardware-efficient object detection network with
masked region proposals in regular shapes. First, we propose a
hardware-friendly region proposal method to avoid redundant
computation as much as possible and as early as possible, with
slight or no accuracy loss. Second, we demonstrate that our method
is generalizable by applying it to many detection backbones
including SkyNet, ResNet-18 and UltraNet. Our method behaves
well in different scenarios, including DAC-SDC dataset, UAV123
dataset and OTB100 dataset. We choose SkyNet as our base
model to design an accelerator and verify our design on Xilinx
ZCU106 FPGA. We observe a speedup of 1.3× and about 30%
energy consumption reduction when the FPGA runs at different
frequencies from 124 MHz to 214 MHz with only slight accuracy
loss. We also conduct a design space exploration and demonstrate
that our accelerator can achieve a theoretical speedup of 1.76×
with masked region proposals compared with the accelerator
without masked region proposals. This is achieved by optimally
allocating DSPs to different parts of the accelerator to balance
the computations before and after the mask.

Keywords—embedded systems, object detection, DNN, region
proposal, mask, FPGA

I. INTRODUCTION

Recent years have witnessed a rapid development of deep
neural networks (DNNs) in the area of computer vision. Many
deep models have demonstrated their success in computer
vision tasks, like AlexNet [1], VGG [2] and ResNet [3].
Empowered by edge computing, researchers are also trying
to deploy DNNs on embedded systems for some real-life
applications. Since embedded systems are usually resource-
constrained, it is hard to deploy well-behaved computation-
intensive DNNs on them. Meanwhile, it is also challenging to
satisfy the demanding requirements of high inference accuracy
and throughput, low energy budget and limited memory
capacity at the same time.

To solve these challenges, one possible approach is to
do some optimizations on hardware or software or use
hardware/software co-design techniques to design hardware-
efficient DNN architectures. Intensive studies have been done
on them and we have got some promising results:

Hardware Design. Most of the computer vision tasks are de-
ployed on application-specialized devices from one of the four

following categories: CPU-based, GPU-based, FPGA-based and
ASIC-based. Among them, FPGA and ASIC allow the users to
alter the hardware design to meet various design requirements.
Thanks to this flexibility, many previous works [4]–[8] have
proposed efficient DNN accelerators to improve the DNN
inference speed and reduce energy consumption.

Software Design. Designing hardware-efficient DNN models
from software is another solution. For instance, designing
lightweight DNNs that will be deployed on mobile devices is a
new trend. This includes SqueezeNet [9], ShuffleNet family [10]
and MobileNet family [11]. Besides, model compression is also
proved to be effective in recent literatures. This includes some
popular methods, such as pruning [12]–[14], quantization [15]–
[17], low-rank approximation and sparsity [18], [19]. Another
possible direction is to use adaptive inference. By applying
adaptive inference methods from four common dimensions:
layer dimensions, channel dimensions, input image resolution
dimensions and computation precision dimensions, we can
witness a decrease in energy consumption and increase in
execution speed with only slight accuracy loss.

Hardware/Software Co-design. Hardware/Software Co-
design methodologies are also promising to solve the chal-
lenges mentioned above since co-design methods combine the
advantages from both hardware and software. For example,
SkyNet [20] is proposed by using a bi-directional DNN design
approach based on neural architecture search (NAS) to meet
hardware constraints. Another good example is FNAS [21],
which is a hardware-aware neural network search framework
to make a balance between FPGA implementation efficiency
and inference accuracy.

In this work, we propose Mask-Net with a light-weight
and hardware-friendly mask generation branch to focus on the
detection of important regions only, aiming to avoid redundant
computations and data movement waste. We summarize our
contributions as follows:

• We demonstrate that the existing region proposal methods
using box regression are too complicated and require rich
feature extraction before the region proposal, which are not
suitable for light-weight embedded object detection.

• We propose a hardware-friendly grid-based mask generation
method, named Mask-Net, which requires much less informa-
tion and can skip redundant computations at an early stage.
We also investigate the impact of different mask shapes



Fig. 1: The distribution of bounding box relative size in DAC-
SDC training set, OTB100 dataset and UAV123 dataset. The
bounding box relative size equals to the ratio of output bounding
box size divided by the input image size.

regarding the computational cost and detection accuracy,
demonstrating that our masked region proposal is effective.

• We apply our method on various detection backbones, includ-
ing SkyNet [20], ResNet-18 [3], and UltraNet [22], to verify
the efficiency and robustness of our method. We evaluate
Mask-Net on three single object detection and tracking
datasets, including DAC-SDC dataset, OTB100 dataset, and
UAV123 dataset, to demonstrate that our technique can be
scaled to various scenarios.

• We choose SkyNet as a base model to perform a case study
and design an accelerator for Mask-Net on Xilinx ZCU106
FPGA. We achieve a speedup of 1.3× with about 30% energy
reduction with slight accuracy drop. We also do a design
space exploration to generate a theoretically optimal solution
to allocate DSPs on FPGA, which will help to maximize the
throughput under a fixed number of DSPs. The speedup can
achieve 1.76× according to C/RTL co-simulation results.

II. MOTIVATION

Although the methods mentioned in the introduction can help
solve the challenges in fast-speed and low-energy computer
vision tasks on embedded systems, there is still room for
improvement. First, we find that in object detection tasks, a
large part of the computational resources of a neural network
are wasted on the background. According to our preliminary
study on some single object detection and tracking datasets,
e.g., DAC-SDC [23], OTB100 [24] and UAV123 [25], about
90% of the region in an image is background, as shown in
Fig. 1, and it is unnecessary compute these regions.

Second, we choose a lightweight detection network
SkyNet [20] as the backbone to do a contrast experiment.
We imitate Faster-RCNN’s approach [26] to perform bounding
box regression and utilize the generated bounding boxes as
region proposals. In the experiment, we find that the location
and size of the bounding box are difficult to converge during
training, and the generated regions of interest almost make
no sense. The reason is that to obtain meaningful regions via
regression, much more features are needed to be extracted

and thus require more trainable parameters. Given limited
resources on embedded systems, the existing regression-based
region proposal methods are not applicable.

Motivated by the challenges of low latency and energy-
efficient object detection on embedded systems and drawbacks
of existing region proposal networks, we propose a lightweight
grid-based mask generation method, and we refer to our
proposed architecture as Mask-Net as shown in Fig. 2. The
most critical part of the Mask-Net is that it introduces a mask
generation new branch, which is a two-layer fully convolution
network (FCN) and can be trained end-to-end for region
proposals.

Mask-Net has some promising features as follows:
• Small Overhead. Since Mask-Net utilizes convolution layers

in the object detection backbone to extract object’s features,
only a few additional convolution layers are needed to
generate masked regions of interest. According to C/RTL
co-simulation results, only 6% of the total inference time
allows the network to correctly distinguish between objects
and background.

• Hardware Friendly. The mask generation branch can reuse
convolution modules in the backbone. As a result, it can
share hardware resources with the backbone. Moreover,
we introduce mask shape regularization to change non-
rectangular regions of interest in a mask into rectangular
ones to avoid complex control logic on hardware. Besides,
channel shuffle [10] in group convolution layers of the mask
generation branch helps to reduce data movement between
DRAM and on-chip memory.

• Generalizable. Our region proposal method can be applied to
various object detection or tracking backbones conveniently
with little modification on the parameters of the mask
generation branch. After finishing training the new branch
specifically for the detection task and the detection backbone,
the detection backbone only needs to be fine-tuned to
cooperate with the mask generation branch better. Besides,
our techniques work well in different scenarios. We get
promising results when evaluating our techniques on different
single object detection or tracking datasets, such as DAC-
SDC [23], UAV123 [25] and OTB100 [24].

III. RELATED WORK

A. Background of Region Proposal

Sometimes objects are relatively small compared with the
whole image in object detection tasks. Initially, people use
the sliding window algorithm [27] to compute every pixel
in an image to get the exact location of objects. However,
this method is computation expensive and will cause high
latency. Region proposal is an effective method to avoid
unnecessary computations. It is used to generate regions
of interest beforehand to avoid computation on inexpensive
features. According to a recent survey [28], there are two
ways to generate region proposals: grouping methods (such as
Selective Search [29], [30]) and window scoring methods (such
as Objectness [31], [32]). Among them, Selective Search has
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Fig. 2: The architecture of Mask-Net. The mask will divide
feature maps after the new branch into small patches and only
regions of interest are needed to be computed.

demonstrated its success in some emerging two-stage object
detectors like R-CNN [33], SPP-net [34] and Fast-RCNN [35].
The innovation of Selective Search is to calculate the similarity
between all adjacent regions and then stitch regions with similar
features to generate regions of interest.

Nevertheless, Selective Search still consumes so much time
compared with the object detection backbone. Region Proposal
Network (RPN) in Faster R-CNN [26] enables nearly cost-
free region proposals by sharing full-image convolutional
features with the detection backbone and thus enables nearly
cost-free region proposals. However, using RPN with present
anchor boxes is computationally expensive, which needs
deep convolution layers to extract enough features. Mask R-
CNN [36] has an extra branch for object mask prediction,
which will be used for instance segmentation. This method,
however, does not generate rectangular regions and thus is not
beneficial for hardware acceleration.

B. Dynamic Neural Network

The dynamic neural network is attracting more attention in
deep learning. One of the biggest advantages of the dynamic
neural network is that it can better adapt to different inputs
through adjustable parameters, structures and computation
graphs, leading to higher computational efficiency, accuracy,
representation power and adaptiveness. In computer vision
tasks, usually the training and inference process of a neural
network is spatial-related. This feature suggests that spatial-
adaptive dynamic computation approaches are promising and
can reduce redundant computation. According to a recent
review [37], there are three common categories of spatial-wise
dynamic neural networks:
• Pixel-level. In a pixel-level dynamic neural network, each

pixel in the input image is treated adaptively for improved
flexibility of feature representation. For instance, precision
gating (PG) [38] is a dynamic dual-precision quantization
technique. It uses a binary decision mask with an adaptive
threshold to select relatively important pixels in an image
and compute them with full precision. Channel gating neural
network (CGNet) [39] is proposed from the DNN channel
dimension to skip the computation of ineffective pixels on
the subset of input channels. However, pixel-level dynamic

neural network needs higher levels of computation, which
will cause real acceleration slower on hardware.

• Region-level. Region-level dynamic neural networks usually
perform inference using regions or patches cropped from the
input image to avoid the challenges of accelerating pixel-
level dynamic neural networks on hardware. Glance and
Focus Network (GFNet) [40] is a good example. It first
extracts a quick global representation of the input image
at a low-resolution level and then selects salient regions
to learn more detailed features. Another good example is
Recurrent attention CNN (RA-CNN) [41]. It can learn the
feature representations for image classification from cropped
patches of the input image and generate the attention map for
the next scale at the same time. Yet, one of the disadvantages
of the region-level dynamic neural network is that cropping
the image into small parts will degrade the practical efficiency
and accuracy.

• Resolution-level. Dynamic neural networks can also treat
the image as a whole in adaptive resolutions for lower
computational cost. Since it is sufficient for neural networks
to recognize easy samples under a relatively low resolution,
it is unnecessary to consider the whole image under the
same resolution as traditional DNNs. For instance, Scale-
aware Face Detection [42] uses Scale Proposal Network
(SPN) to generate fine-grained scale proposals before the face
detection task to effectively reduce redundant computation.
ELASTIC [43] can learn a scaling policy in which images
are processed at different resolutions in different layers by
just adding a parallel scaling proposal new branch with little
computation overhead.

IV. PROPOSED APPROACHES AND INNOVATIONS

In this section, we first introduce our new architecture: Mask-
Net. Then we will discuss our innovative approaches for both
algorithm and hardware in the following section.

A. New Architecture

The main idea is to add a lightweight branch to generate a
rectangular mask, which can help to separate the object from
background as early as possible, so that the accelerator can
skip the computation for background. The new architecture is
shown in Fig. 2. The input of Mask-Net is an image with an
object to be detected, and the output is the location, height and
width of object’s bounding box. The output of the new branch
is a confidence matrix, which is considered as the confidence
mask, and each patch in the mask represents a patch at the
corresponding position in the feature map of the backbone.
The gate function here selects proposed regions based on the
value of each pixel in the mask. Let y∗l and yl represent the
feature map of the lth layer with masked region proposals and
the original feature map of the lth layer, respectively. After
applying the mask to all the layers after the new branch, the
new feature map can be written as follows:

y∗l = yl ⊙ upsample(mask) (1)
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Fig. 3: The architecture of Mask-SkyNet. The new branch includes a two-layer fully convolutional network. The two layers
are 5× 5 group convolution with group size = 32 and 3× 3 convolution. The max-pooling layer with stride 4× 8 helps to
downsample the feature map from 20× 40 to mask shape 5× 5. After passing the gate function and regularization, the mask is
upsampled to the size of the feature map in the backbone and applied to 7 layers behind the branch.

The upsample function is used to resize the mask shape from
a× a to the size of the feature map and ⊙ means Hadamard
product.

As a case study, we use SkyNet [20] as the backbone. The
backbone is generated by stacking six bundles as shown in
Fig. 3. Each bundle contains a 3×3 depth-wise Conv layer [11],
1 × 1 point-wise Conv layer, batch normalization layer [44]
and ReLU6. We add a new branch after the third bundle in
SkyNet. We refer to this new model as Mask-SkyNet. By
sharing convolution layers with the SkyNet backbone network,
the new branch can extract preliminary features of the image.
In this way, the confidence mask can be obtained through a
two-layer fully convolutional network, which greatly reduces
the number of network parameters.

B. Algorithm Innovations

• Confidence Mask and Regions of Interest Generation. As
shown in Fig. 3, the output of the new branch is a confidence
mask with each patch’s score scaled to between 0 to 1 by
Sigmoid function. The higher the patch’s score, the more
likely that the object is in this patch. Then we set a threshold
for each patch’s score. If the score is above the threshold, we
keep this patch and set its score to 1. Otherwise, we assume
this patch to be background and set its score to 0. Then we
select patches with a score of 1 as regions of interest for
further computation and skip the computation on patches
with a score of 0 in layers after the new branch.

• All-Pass Mechanism. To improve the robustness of mask
generation and to avoid mis-prediction for hard-to-detect
cases, if the score of all patches of a confidence mask does
not exceed the threshold, we assume that the new branch
fails to identify the location where the object may exist. In
this case, the score of all patches in the mask is set to 1. We
believe that this approach is conducive to improving IoU.

• Two-stage Training Process. To effectively train the new
architecture, we come up with a two-stage training strategy.
We first fix the weights in the backbone and only train the
new branch. The new branch can learn information about
the approximate location of the object in this stage. Then
we fix the weights of the branch and fine-tune the weights
of layers behind the branch in the backbone to make them
adapt to the influence of applying the mask.

C. Hardware Innovations

• Region of Interest Shape Regularization. The convolution
in our accelerator on FPGA is tile-based. If the whole tile is
encapsulated by a 0-mask, the data loading and computation
for the entire tile is skipped. If the tile is partly covered by
the 0-mask, we will find out the non-zero patches in the
mask and calculate them. However, the shape of regions
of interest formed by the patches with a score of 1 in a
mask may not be rectangular. In this case, every time before
loading and calculation of one patch in a tile, we have to do
a judgement based on the score of the patch. This judgement
will introduce complex control logic in hardware. To avoid
this problem, we propose to regularize the shape of regions
of interest in the generated mask into rectangular as shown
in Fig. 3. The rectangular regions of interest in the mask
can then be directly mapped to the corresponding feature
map regions by upsampling. Without extra judgement on the
score of the patch, we can easily control where to calculate
on FPGA.

• Channel Shuffle. To reduce the computation overhead and
the number of parameters of the new branch, we propose
to use group convolution. In the case study, the first group
convolution reduces the number of channels from 192 to
32. In each group, 6 input channels correspond to 1 output
channel. To reduce data movement between DDR and on-
chip memory, we use the channel shuffle method [10]. We



use the pointer to find the location of data we need to read in
DDR. The pointer points to the data address of each channel
in the DDR, and it skips 6 channels every time it moves.
Thus we can load the data we find into on-chip memory in
a specific order.

D. Design Space Exploration

After applying the mask to the detection backbone, the
execution time of layers before the new branch will occupy
about 75% of the execution time of the whole network. This
time imbalance will affect the overall performance of the
accelerator. To avoid this imbalance, we do a design space
exploration to find the best allocation scheme for DSPs to
maximize the Mask-Net accelerator throughput with a fixed
number of extra DSPs. A Mask-Net accelerator with a new
branch can be divided into three parts: layers before the new
branch, layers after the new branch and new branch layers. We
assume that the number of DSP across three parts are Npre,
Npost and Nb respectively, and the total available DSP count is
Ntotal. The relationship between them satisfies the following
equation:

Ntotal = Npre +Npost +Nb (2)

To simplify our model, we assume that the computational
speed is proportional to the number of DSP. Thus, the total
execution time of network with mask and without mask after
DSP redistribution can be calculated as follows:

Tm =
N∗

pre

Npre
× tmpre +

N∗
post

Npost
× tmpost +

N∗
b

Nb
× tnb (3)

T =
N∗

pre

Npre
× tpre +

N∗
post

Npost
× tpost (4)

In these two equations, Tm and T are the execution time of
network with mask and without mask respectively; N∗

pre, N∗
post

and N∗
b represent DSP count before, after new branch and new

branch itself after DSP redistribution; tmpre, tmpost and tnb
are the execution time of three parts in network with mask
before DSP redistribution; tpre and tpost are the execution
time of layers before and after new branch in network without
mask before DSP redistribution. The task is to find the value
of N∗

pre, N∗
post and N∗

b to minimize Tm with fixed Ntotal. We
can also get the speedup ratio r when Tm is at the minimum:

r =
T

Tm
(5)

V. EXPERIMENTS

A. Experimental Setup

Dataset Generation and Ground-truth Mask Label
Collection. We train the Mask-Net architecture on three
single object detection and tracking datasets: DAC-SDC [23],
OTB100 [24] and UAV123 [25]. We use 93520 images in
DAC-SDC dataset to train and 1000 images in the validation
set to test our model. In UAV123 and OTB100 dataset, we

Fig. 4: The relationship between threshold, IoU and the ratio
of regions of interest (ROI) divided by the whole image when
using different mask shapes. We choose threshold = 0.3 and
mask shape 5× 5 in this case study. The data point we choose
is highlighted with a star.

shuffle all the images first and then split the training, validation
and testing as 7:2:1 randomly. The mask shape we use in the
experiment is 5 × 5 and threshold is 0.3. The ground-truth
mask label used for training is generated based on the ground-
truth annotations of datasets. In a ground-truth mask label, the
value of patches occupied by the ground-truth annotation of
the object is set to 1, and the value of other patches is set to 0.

Evaluation Metrics. We use three evaluation metrics:
IoU, throughput and energy consumption to evaluate the
improvement of Mask-Net. We choose the detection backbone
as the baseline of Mask-Net and design an FPGA accelerator
based on SkyNet. Our accelerator is deployed on ZCU106
FPGA by using Vitis HLS 2018.3. During HLS design, we
deliberately not to optimize the new branch and backbone, and
keep the initiative interval (II) and parallelism of the modules
the same before and after adding the new branch. We believe
that doing so ensures the fairness of the comparison.

B. Experiment Key Results

Mask Shape and Threshold Study. We first study the
impact of different mask shapes on Mask-SkyNet performance.
We choose different thresholds from 0 to 1 and different mask
shapes including 4×4, 5×5, 4×8, and 5×10. Our experiment
is done on DAC-SDC dataset. Fig. 4 shows the relationship
between threshold and IoU under different mask shapes. We
find 5 × 5 as the mask shape and 0.3 as the threshold can
achieve a good balance between inference speed and accuracy
and this setting also behaves well on two other datasets and
backbones.

Mask quality. We further analyze the accuracy of the masked
region proposals generated by Mask-SkyNet on DAC-SDC
dataset. The experiment results show that 84.3% of proposed
regions in the mask can completely cover the object while
only 1.2% of region proposals are completely wrong. The high
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Fig. 5: C/RTL co-simulation result from Vitis. We estimate
the execution time of different parts in the Mask-SkyNet
accelerator on the DAC-SDC dataset from the waveform results.
We also show the decrease of operations on ResNet-18 and
UltraNet backbone. The operation (OP) here is the addition
and multiplication in convolution layers.

accuracy of proposed regions means the new branch can predict
the location of the object effectively.

Besides analyzing the accuracy of generated masked re-
gion proposals, we also apply the ground-truth mask to the
SkyNet backbone before and after fine-tuning for comparison.
Experiment results in Table. I show that using masked region
proposals will only cause 5% ∼ 6% IoU loss.

before FT after FT
ground truth mask 0.7009 0.7249

mask generated 0.6654 0.6824

TABLE I: IoU after applying ground truth and generated masks.
The results are from software and both weights and feature
maps are float32. FT means fine-tuning.

LUT FF BRAM DSP
Available 230,400 460,800 312 1,728

Mask-SkyNet 69,960 70,548 209 416
SkyNet 49,554 58,203 209 329

TABLE II: Resource utilization on Xilinx ZCU106 FPGA. The
clock frequency is 166MHz. Results are reported by Vitis HLS.

Software and Hardware Evaluation Results. We apply
our Mask-Net technique on three different detection backbones:
SkyNet [20], ResNet-18 [3] and UltraNet [22]. We then use
three different single object detection and tracking datasets:
DAC-SDC [23], OTB100 [24] and UAV123 [25] to evaluate
our design. At software level, weights and feature maps are
both 32-bit floating-point. The software evaluation results are
shown in Table. III. We analyse IoU change before and after

projection

Minimum inference time

Fig. 6: DSP exploration space when extra DSP count is 1309.
The DSP allocation scheme to achieve the least inference time
is marked with a star.

mask application and the speedup. We also show the overhead
of the new branch and the ratio of regions of interest (ROI)
to the area of the input image. With IoU loss around 5%, the
theoretical speedup can achieve 1.6× to 2.3× depending on the
dataset and network architecture. Moreover, the computation
overhead of the new branch can be ignored compared with the
detection backbone.

We also design a hardware accelerator to deploy our case
study design based on SkyNet backbone onto ZCU106 FPGA.
The weights are 11 bits and feature maps are 9 bits. We use
DAC-SDC, UAV123 and OTB100 dataset to test our design.
The on-board results are shown in Table. IV, and resource
utilization is shown in Table. II. By analyzing the utilization
report from Vitis, we find that 73 of the 87 DSPs added come
from the new branch.

Detailed Latency Breakdown. We divide our FPGA ac-
celerator design into three separate parts: layers before new
branch, layers after new branch and new branch itself as shown
in Fig. 2. From C/RTL co-simulation waveform analysis, we
find that the total execution time of the new branch is about
6.5ms every 4 images, which only takes about 6% of the
total inference time in Mask-SkyNet. After applying the mask
to backbone, we observe a 73.4% decrease in the execution
time of the layers after the new branch. Detailed information
about the execution time of different parts in Mask-SkyNet
accelerator and the estimated operation decrease using ResNet-
18 and UltraNet as detection backbone is shown in Fig. 5. It
shows that applying mask can reduce the computation cost of
layers after the new branch by about 70%, and by about 35%
∼ 50% for the total latency depending on network architecture
and dataset.

Design Space Exploration Results. In design space ex-
ploration experiments, we choose SkyNet as our detection
backbone and evaluate on DAC-SDC dataset. Vitis synthesis
report of Mask-SkyNet accelerator shows that layers before the
new branch utilize 320 DSPs, the new branch utilize 54 DSPs
and layers after the new branch utilize 313 DSPs. Note that
shared DSPs are repeatedly calculated in the number of DSPs



Backbone Dataset IoU without mask IoU with mask IoU Loss Speedup ROI New Branch Overhead

SkyNet
DAC-SDC 0.7192 0.6824 5.12% 2.29× 19.4%

0.83%OTB100 0.8331 0.7997 4.01% 1.99× 28.8%
UAV123 0.7653 0.7238 5.42% 2.15× 23.2%

ResNet-18
DAC-SDC 0.5840 0.5552 4.93% 2.18× 20.0%

0.28%OTB100 0.8214 0.8027 2.28% 1.84× 32.6%
UAV123 0.6978 0.6690 4.13% 2.13× 21.7%

UltraNet
DAC-SDC 0.6112 0.5538 9.39% 1.78× 24.3%

1.30%OTB100 0.7845 0.7327 6.60% 1.66× 31.2%
UAV123 0.6602 0.6276 4.94% 1.64× 32.1%

TABLE III: Software evaluation results when using different detection backbones and different datasets. The weights and
feature maps are both float32. The speedup and new branch overhead are targeting Xilinx ZCU106 FPGA. The ROI (regions of
interest) column represents the ratio of regions of interest occupied in the input image.

Dataset Frequency FPS Energy per 1000 frames Speedup Energy Reduction

DAC-SDC
214 MHz 34.24 8.08J 1.35× 32.3%
166 MHz 38.10 7.47J 1.35× 33.2%
124 MHz 31.18 8.61J 1.37× 32.8%

OTB100
214 MHz 32.62 8.45J 1.30× 29.3%
166 MHz 36.34 7.85J 1.28× 29.5%
124 MHz 29.62 9.29J 1.30× 27.0%

UAV123
214 MHz 31.80 8.76J 1.27× 29.1%
166 MHz 35.33 8.16J 1.39× 32.8%
124 MHz 28.96 9.35J 1.31× 30.1%

TABLE IV: Hardware deployment result of Mask-SkyNet on ZCU106 FPGA. The weights are quantized to 9 bits and feature
maps are quantized to 11 bits. *Note that the energy is estimated by PMBus in PYNQ image v2.4.

Fig. 7: The relationship between the number of extra DSPs,
inference time and theoretical speedup. The theoretical speedup
is Mask-SkyNet over SkyNet when allocating the same number
of extra DSPs to both of the networks’ backbones.

of three parts. We can also get the execution time of three
parts from C/RTL co-simulation results. Thus, the values of
some predefined variables in Eq. 3 and Eq. 4 are: Npre = 320,
Npost = 313, Nb = 54, tmpre = 79.5ms, tmpost = 19.5ms,
tnb = 6.5ms, tpre = 78.5ms and tpost = 73.2ms. Two
equations can be rewritten as follows:

Tm =
79.5

1 +A/320
+

19.5

1 +B/313
+

6.5

1 + C/54
(6)

T =
78.5

1 +A/320
+

73.2

1 +B/313
(7)

where A, B and C are the number of total extra DSPs in layers
before the new branch, layers after the new branch and new

Fig. 8: The DSP distribution across three parts with different
total number of extra DSPs. Most of extra DSPs are added to
layers before the new branch to accelerate the generation of
the mask.

branch respectively.
The exploration space when the number of extra DSPs is

1309 is shown in Fig. 6. The relationship between the number
of extra DSPs, inference time and the theoretical speedup is
shown in Fig. 7. The theoretical speedup can achieve 1.76×
with balanced computation between three parts. DSP allocation
scheme that maximizes accelerator throughput when using a
fixed number of additional DSPs is shown in Fig. 8.

VI. CONCLUSIONS

In this work, we present a lightweight and hardware-friendly
object detection network with masked region proposals to avoid
redundant computation. Our design, Mask-Net, has a small
computational overhead, is compatible with common object



detection backbones and works well in different scenarios.
The software and on-board evaluation exhibit an increase in
throughput and decrease in energy consumption with slight
accuracy loss compared with detection backbones without
masked region proposals. We also demonstrate its theoretical
maximum speedup by doing a design space exploration about
the DSP allocation scheme.
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