Accelerating Data Analytics near Memory:
A k-NN Search Case Study

Minho Ha, Joonseop Sim, Jungmin Choi, Donguk Moon, Taeyoung Ahn, Byungil Koh, Eui-Cheol Lim, Kyoung Park

SK hynix, Icheon 17336, South Korea
E-mail: minhol.ha@sk.com

Abstract—Data explosion driven by advances in big data and
Al has caused a demand for huge increase in memory capacity
and bandwidth, shifting the bottleneck of system performance
from computing to memory side. In this paper, we propose a
Accelerating Data Analytics near Memory (ADAM) applying near
data processing approach to solve memory side bottleneck. With
the Roofline analysis of k-NN search, one of the representative
operations for data analytics application, we observed that the
k-NN search is a memory-intensive workload, which is suitable
for ADAM to process. To address the limitations of running k-
NN search on existing computing system, we propose a system
equipped with ADAM cards that accelerates k-NN search without
the analytics servers involved in the acceleration. Our evaluation
on various feature vector data sizes shows up to 56.7%, 67.3%,
and 68.5% improvements in performance, power, and cost, re-
spectively, compared to baseline system. As a result of comparing
with upcoming high-end CPU model, performance improvement
of up to 27.4% can be achieved in this case as well.

I. INTRODUCTION

Recently, the amount of data processed in data centers has
been explosively increased [1]. To process this soaring amount
of data in real time without inconvenience to users is a very
important service of the data center. It is known that operations
used for data analytics require relatively light computation
compared to a large amount of memory access [2]. It implies
that data analytics operations are memory-intensive workloads.

Researchers have recognized that CPU-centric architectures
are inefficient to handle memory-intensive workloads. Data
movement between CPU and memory for frequent data access
has been a major cause of overall system performance degra-
dation [3]. To effectively handle memory-intensive workloads
where data movement occurs frequently, a specialized archi-
tecture is required.

Near data processing (NDP) approach can be a promising
solution to address the data movement issue by processing
some of the operations right next to the memory where the data
is stored. It can fully utilize the internal memory bandwidth
and data movement to the host CPU or other accelerators can
be mitigated. There have been many prior research related to
the NDP approach. However, they lacked prudence about the
limited memory capacity for the processing unit. Also, many
of them utilized the internal bandwidth of the existing DIMM
module, they has a limit to scalability to handle large memory-
intensive workloads.

In this paper, we propose Accelerating Data Analytics near
Memory (ADAM), a card-type memory solution with huge

memory capacity, high memory bandwidth, and NDP core
optimized for memory-intensive workloads. Since ADAM’s
NDP core offloads a memory-intensive part from the host
operations and returns only the reduced result, it can minimize
the amount of data movement while fully utilizing the high
internal bandwidth of ADAM card. Also, since ADAM is
a card-type solution plugging into serial interface, it can be
easily scaled up. These features can lead to performance and
power consumption improvement.

Based on the ADAM, we suggest a system to accelerate
data analytics operations. We investigated a k-NN search, one
of the representative operations of data analytics application,
as a case study. First, we quantitatively confirm that k-NN
search is a memory-intensive workload based on Roofline
analysis [4]. And then, we precisely model baseline system
and ADAM-augmented system running data analytics oper-
ations. In the baseline system, k-NN search is accelerated
through host CPU’s SIMD hardware in DB servers, and in the
ADAM-augmented system, k-NN search is accelerated by the
ADAM cards installed in DB servers. Simulation results show
that performance, power, and cost are improved by 56.7%,
67.3%, and 68.5%, respectively, compared to the baseline
system. Compared with an upcoming high-end CPU model
that supports DDR5, ADAM-augmented system shows 27.4%
performance improvement.

II. BACKGROUND

A. Data Analytics Acceleration Examples

1) Industrial Approach: Recently, there are efforts to accel-
erate data analytics in industry. One effort is Advanced Query
Accelerator (AQUA) for Amazon Redshift [5]. AQUA brings
compute to storage by processing critical data in innovative
cache. It uses Amazon web service (AW S)-designed processor
and a scale-out architecture to accelerate data processing
beyond what traditional CPUs can do. AWS reported that
AQUA allows Amazon Redshift to automatically enrich certain
types of queries to run up to 10x faster than other enterprise
cloud data warehouses.

Another effort is the solution proposed by Bigstream [6].
Bigstream’s solution offloads the data analytics operations suit-
able for hardware (FPGA or SmartSSD [7]) acceleration [8]
to accelerators. According to Bigstream, users can achieve
up to 10x performance improvement without code change. In

Memory-intensive Compute-intensive

Ol(Sort-aggregate,
Windoiw, Join) = 1

. region region

Y OI(Hash—aggregate,

@) Project) = 0

u—‘__ Peak performance/Peak bandwidth
g Ol(Filten) (e.g. Intel Xeon Gold 6256 = 9.82)
g = 0.83

£

L

9]

o

Operation intensity [FLOPs/Bytes] >

Fig. 1: Roofline plot.

addition to the above solutions, various methods have been
proposed in industry.

2) Academic Approach: Academia has been also reporting
various research to accelerate data analytics [9]-[11]. In [9],
Genesis processing genomic data efficiently is proposed.
Genesis provides up to 19.3x better performance and up to
15x better cost savings than traditional methods. In [10],
FPGA engine for accelerating singular value decomposition
(SVD) kernel widely used in data analytics is proposed.
Through the scalable parallel SVD FPGA engine, computation
performance improved by 80x to 300x compared to high-
performance CPUs. In [11], a near storage accelerator for
database sort, called NASCENT utilizing SmartSSD [7], is
proposed. NASCENT is 147.2x faster and 131.4x more energy
efficient than the CPU baseline as the number of storage
devices increases.

B. Roofline Analysis

Roofline analysis [4], which shows the maximum perfor-
mance achievable under given hardware conditions, is run
to identify memory-intensive workloads among various data
analytics operations. Based on the Roofline analysis, we
identify the relationship between operational intensity (OI)
and performance (FLOPS) of the workload. Roofline can be
obtained through Eq. (1).

Roofline = min(m, 8 x OI) (1)

In Eq. (1), # and 8 mean peak performance and peak
bandwidth of given hardware, respectively. Roofline plot based
on Eq. (1) is like Fig. 1. In Fig. 1, bend point of the Roofline
is /0 point. If the workload is located to the left of the bend
point, it is a memory-intensive workload, and if it is located to
the right, it is a compute-intensive workload. When Roofline
analysis of Spark SQL [12], a representative data analytics
operation, is run, a lot of Spark SQL operations are memory-
intensive workloads.

C. Near Data Processing

NDP is a concept of processing data right next to mem-
ory where the data is located. Unlike Processing-in-Memory
(PiM) [13], which puts processing elements (PEs) in memory
chip, NDP puts PEs near memory chip. If NDP approach is
adopted, there is an advantage that internal memory bandwidth
can be fully utilized because data is processed right next to

the memory. Such NDP approach can reduce the data transfer
size because the data is processed near the memory and then
only output data is transferred to the host CPU. In other words,
communication bottleneck can be alleviated.

To take full advantage of NDP, memory bandwidth should
be fully utilized. It means that memory-intensive workloads
whose OI is low are suitable workloads for NDP. Since
data analytics operations are memory-intensive workloads, as
mentioned in Section II-B, a great performance improvement
can be expected when applying the NDP approach to data
analytics operations.

III. K-NN SEARCH ACCELERATION

In this section, we will explain the features of k-NN search,
which is considered as a case study, and why k-NN search is
selected as a case study. And reference data analytics system
that accelerates k-NN search will be described.

A. Features of k-NN Search Algorithm

k-NN search is an algorithm finding & vectors having the
closest characteristics through similarity comparison between
input vector and vectors to be compared. Although similarity
comparison is possible in various ways, we will use cosine
similarity, the most representatively used for k-NN search.
Cosine similarity-based k-NN search is shown in Eq. (2).

i=1

A-B

Similarity(A, B) = 1A B]] N

2

In Eq. (2), A and B are feature vector and n is feature vector
dimension. Although there are square root and division in k-
NN search, it mainly consists of simple addition and element-
wise multiplication for inner product. Eq. (2) is used for all
feature vectors in the database. That is, for k-NN search, all
feature vectors in the database must be accessed. In summary,
k-NN search requires a lot of memory access while the amount
of computation is small.

To quantitatively identify the computational features of k-
NN search and make prioritized optimization decisions, we run
a Roofline analysis [4]. Fig. 2 shows the Roofline analysis
result of k-NN search. For Roofline analysis, Intel Xeon
Gold 6256 [14] and 2933MHz DDR4 (6 channels per CPU)
are assumed. k-NN search workload parameters for Roofline
analysis are as follows: vector dimension is 128, each vector
element is 32-bit floating point number, and the number of
feature vectors in the DB is 1,900,000. Since k-NN search
has a very low OI, approximately 1.43 in this case, it is
located in the memory-bound region. It means that no matter
how good the CPU performance is, k-NN search cannot be
run properly due to the memory bandwidth bottleneck. To
effectively process k-NN search, it is more important to solve
the memory bandwidth bottleneck than CPU performance, and
NDP can be the solution.

fury
o
]

Intel Xeon Gold 6256
k-NN Search

10° 10! 102 103
Operational Intensity (FLOPs/Byte)

Performance (GFLOPS)
= =
2 2

1071

Fig. 2: Roofline analysis result of k-NN search. k-NN search
is located in the memory-bound region (slope).

Analystics Server Cluster DB Server Cluster

sQL .
Queries -

Analytics
Engine

Data Data

Ingestion|y Loader gy — Storage

Fig. 3: System for k-NN search acceleration on DB servers
& its operation flow: (D Offload k-NN search function from
analytics engine to host CPU’s SIMD hardware in the DB
server, @ Read feature vectors in the DB, 3) Accelerate k-
NN search using SIMD hardware, @) Return results.

B. k-NN Search Acceleration on DB Servers

We assume a baseline system consisting of an analytics
server cluster and a DB server cluster, composed of in-memory
DB and storage DB. In general, necessary data from the DB
servers is brought to the analytics servers and processed in
analytics servers. In addition to providing data to the analytics
server cluster, our baseline DB server cluster is able to process
selected analytics functions that are pushed down from the
analytics server cluster. The push-down feature improves the
overall data analytics performance by reducing data movement
from the DB cluster to analytics cluster. This can also be
applied to k-NN search. Analytic engine (such as Apache
Spark [15]) offloads k-NN search function to the DB server,
and the offloaded k-NN search is accelerated by SIMD engine
of host CPU in the DB server. Although acceleration is
possible through SIMD engine in the DB server, k-NN search
has a memory-bound feature, so there is still a bottleneck
due to host-side memory bandwidth. Therefore, a greater
acceleration effect will be achieved by solving the memory
bandwidth bottleneck through the NDP approach.

@ 2
Mem Mem
saL « Query ™ NOP I v

Queries Engine (
m 9 - — ©) —
Analytics emo NDP [rro

Engine
Data Data -

Ingestion y Loader pmm I— m | Mem |
| Mem [Mem]

Fig. 4: Proposed system architecture for k-NN search acceler-
ation & operation flow: (D) Offload k-NN search function from
analytics engine to DB server’s host CPU, @ Offload k-NN
search function from DB server’s host CPU to ADAM’s NDP
cores, @ Read feature vectors in the DB, @ Accelerate k-NN
search using NDP cores, ® & ® Return results.

IV. ACCELERATING DATA ANALYTICS NEAR MEMORY
A. Architecture Overview

We propose ADAM to which NDP approach is applied for
data analytics acceleration in DB servers. In the proposed
system, shown in Fig. 4, ADAM cards are added to the DB
servers. By adding ADAM cards with built-in NDP core,
memory capacity and bandwidth expansion and calculation
functions can be added at the same time. Up to 16, for which
the physical size of one server is considered, ADAM cards
can be installed in ADAM-augmented server. Like the baseline
system, k-NN search is first offloaded to the host CPU in the
DB server, but this operation is once more offloaded to the
NDP core in the ADAM card (API related to offloading will
be explained later). Unlike the baseline system with memory
capacity and bandwidth limitations, the proposed ADAM-
augmented DB server can provide large capacity and high
bandwidth with computation capability, thereby maximizing
k-NN search processing performance.

If the feature vector data size in DB server and miscel-
laneous data exceeds memory capacity of one ADAM card,
k-NN search has to be processed in multiple ADAM cards
(scale-up case, up to 16 cards per server). In this case, it should
be processed hierarchically. After processing k-NN search for
each card, one more k-NN search is processed. For the second
k-NN search, only k out of up to 16k needs to be selected, so
it will not significantly affect the total number of operations
and data movement. When scale-out is required, k-NN search
needs to be additionally processed once more. However, like
the scale-up case, the third k-NN search will not significantly
affect the total number of operations and data movement.
In the case of scale-out, data is exchanged through Ethernet
(200Gbps for highend GPU server like DGX-A100 [16]), but
the data going out of the server is only k vectors, so there will
be no network bottleneck.

B. Details of ADAM Card

1) ADAM Card Architecture: ADAM card, whose architec-
ture is shown in Fig. 5, is composed of NDP core optimized for
data analytics processing and huge capacity and high internal
bandwidth DDRS memories. Since the NDP core needs to be

High-speed
serial interface]
(CXL/PCle)

Serial Interface IP
Near Data Processor

Massive

arallelism
High internal — /P

memory bandwidth

Fig. 5: ADAM card architecture.

able to process various data analytics operations, it is chosen
as a lightweight CPU rather than a specialized accelerator.
Since memory-intensive workloads require processing large
amounts of data at one time rather than fast data processing,
ADAM card’s NDP is designed to support a wide SIMD
bit-width with low operation frequency to maximally utilize
high internal memory bandwidth. ADAM cards and the host
CPU are connected by a high-speed serial interface such as
compute express link (CXL) or PCle. Up to 16 ADAM cards
can be installed per server. It means that scale-up (in-server
expansions) of a large capacity and high bandwidth memory
solution becomes possible.

2) ADAM Card Specification: Specifications of ADAM
card are summarized in Table I. NDP core used in the ADAM
card is optimized for data analytics function acceleration.
Computational performance of NDP itself is 320GFLOPS,
which is inferior to Intel Xeon Gold 6256 [14], whose com-
putational performance is 1382.4GFLOPS. However, since the
ADAM card supports large capacity (256GB) and high internal
bandwidth (307.2GB/s) memory, it is rather suitable for k-NN
search, which is a memory-bound operation reported in III-A.
As can be seen from Fig. 4, only the k-NN search results
processed by NDP core are transmitted to the DB server’s
host CPU ((®) and analytics server (®), so the serial interface,
assuming CXL, between host CPU and ADAM cards can be
covered with only a small number of lanes (4 lanes, 16GB/s).
When £ is 10, for example, SKB result data is transmitted via
CXL. It takes hundreds of nanoseconds considering CXL link
and switch latency. This is a negligible amount of time for
end-to-end k-NN search perspective.

C. APIs of k-NN Search Acceleration using ADAM

1) API Overview: To offload k-NN search to ADAM
cards, we define and implement APIs between the host
and ADAM cards. Table II summarizes the implemented
APIs. APIs can be classified into memory manage-
ment functions (ADAM_malloc (), ADAM_ free (), and
ADAM_realloc ()) and k-NN search acceleration function
(KNN_scan ()).

For k-NN search, feature vector, input query, and result data
are stored in memory of ADAM card (see Fig. 7). Feature
vector data is used for cosine similarity calculation. We assume
that the feature vector data is already loaded into memories in

TABLE I: ADAM card specification

Frequency [GHz] 1
SIMD bit-width 1024
NDP core # Cores per NDP 10
configurations Performance per core [GFLOPS] 32
ADAM card performance 320
[GFLOPS]
of channels per NDP 8
Capacity per ADAM card [GB] 256
cor?ggll::-(;ig]ons Memory frequency [MHz] 4800
Channel bandwidth [GB/s] 38.4
ADAM card memory bandwidth
(GBJs] 307.2
Serial interface CXL lanes per ADAM card 4
configurations CXL bandwidth [GB/s] 16

TABLE II: Implemented APIs for k-NN search offloading

API functions
Memory allocation
Free memory

Format

ADAM _malloc (int size)

ADAM_free (float =*index)
ADAM_realloc (float =index,

int size)

KNN_scan (int table_1ID,

int feature_ID, int K,
float* array, float xindex)

Re-allocation

Request k-NN search
and read results

the ADAM cards. Input query data is data containing various
information for conducting k-NN search. Result data is the
result of k-NN search processed through the NDP core of
ADAM card. Request and response between NDP core and
host CPU are executed through mailbox in ADAM card (see
Fig. 7). Request and response operate based on interrupt,
which will be explained in detailed in Section IV-C3.

2) Memory Management Functions: Memory management
functions are always required for ADAM cards, regard-
less of the application. Fig. 6 depicts memory management
function APIs. ADAM _malloc () allocates the physical ad-
dress area of the memory in the ADAM card and maps it
to a virtual device address (pointer or index) and returns
it. ADAM_free () frees the memory area allocated with
ADAM_malloc. ADAM_realloc () changes the size of the
area allocated with ADAM_malloc.

3) k-NN Search Acceleration Function: Operation flow of
KNN_scan () is described in Fig. 7. @ When KNN_scan ()
is called, input query data is transferred to memory in ADAM
card through DMA. @ Host CPU sends request message to
mailbox and NDP core receives an interrupt from mailbox. Q)
NDP core reads the request message and then processes the
offloading function based on query data. After the operation
is finished, the result is stored in memory. @ NDP core sends
response message to mailbox and host receives interrupt from
mailbox. & When host CPU receives an interrupt from the
mailbox, host CPU reads the response message. ® k-NN
search result data is transferred to host memory by direct
memory access (DMA). In this paper, only k-NN search
acceleration function API has been described, but other data
analytics acceleration function APIs could be added.

As shown in Fig. 7, not only feature vector data but also
input query data and result data are stored in the memory of

0x0000_0000

float Query_0[8], Query_1[16];
float *arr0, *arr1;

i 0x0000,0020 == =====~"-
Pointer o0t

arr0 = ADAM_malloc (sizeof(float)*8);- 0
If (arr0 == NULL) exit(1); 1

arrl = ADAM_malloc (sizeof(float)*16);
If (arr1 == NULL) exit(1);

Physical address | Size
0x0000_0000 | 32B |-~ 648
0x0000_0020 | 64B

-++0%0000_0060 -——=—————+

< Pseudo code > < ADAM memory map > < ADAM memory >

(a) ADAM_malloc ()

float Query_0[8], Query_1[16];
float *arrQ, *arr1;

arr0 = ADAM_malloc (sizeof(float)*8);
If (arr0 == NULL) exit(1);

arrl = ADAM_malloc (sizeof(float)*16);
If (arr1 == NULL) exit(1); {

ADAM _free(arr0y;.......
< Pseudo code >

0x0000_0000

- 0x0000-0020 == ===~~~
Pointer

Physical address | Size |

1 0x0000_0020 64B | 0x0000_0060 | ————————

< ADAM memory map >

(b) ADAM_free ()

< ADAM memory >

0x0000_0000

float Query_0[8], Query_1[16];

float *arr0, *arr1; 0x0000.0020 |- ————————-
arr0 = ADAM_malloc (sizeof(float)*8); Pointer | Physical address | Size 64B
If (arr0 == NULL) exit(1); 0

. 7 0x0000_0060 64B [~0x0000_0060 {————————-
arrl = ADAM_malloc (sizeof(float)*16);/ 7 0x0000 0020 T Ry

If (arr1 == NULL) exit(1); Ty 648
ADAM _realloc(arr0, sizeof(fload)*16);
< Pseudo code >

0x0000_00A0
< ADAM memory >

< ADAM memory map >

(c) ADAM_realloc()

Fig. 6: Memory management function APIs.

ADAM Cards

DB Server

Memory

Fig. 7: Implemented KNN_scan () API flow.

ADAM cards. However, feature vector data occupies hundreds
of GB, whereas input query data and result data occupies only
tens to hundreds of KB. In this paper, we will assume that most
of ADAM card’s memory is used to store the feature vector.

D. Benefits of k-NN Search Acceleration using ADAM

1) Performance Improvement: Using a ADAM card, the
operation of Eq. (2) can be processed in parallel. In other
words, it can be expected that the performance will be im-
proved as much as the ADAM card is inserted. As mentioned
above, when a hierarchical k-NN search is required, the
second and higher-level k-NN search has little effect on the
overall performance, and the network traffic caused by the k-
NN search result is very small. So the performance can be
improved in proportion to the number of ADAM cards.

2) Power & Cost Improvement: If k-NN search is processed
using ADAM, great gains can be expected in terms of power
and cost. Memory of host CPU is limited in scalability because
it is constrained by the number of memory channels per

TABLE III: Comparison of ADAM PoC Card and Simulator

ADAM cards 1 2 4
k-NN search Measured by PoC 1 1.9 | 3.8
performance | Estimated by simulator | 1 2 4

CPU socket. That is, since there is a limit to adding memory
DIMMs for expansion of memory capacity and bandwidth,
high-cost scale-out, for which whole server should be added
for expansion, is required. However, in the case of ADAM,
simply plugging in additional CMS cards to serial interface,
memory capacity and bandwidth can be easily expanded. It is
possible to expand up to 4TB capacity and 4.8TB/s aggregate
bandwidth by scale-up only. Until memory capacity of CMS-
augmented system reaches 4TB, power and cost increase only
in proportion to the number of CMS cards added.

V. EVALUATION
A. Simulation Setup

1) Methodology: We build an in-house simulator based on
full-system modeling that mimics both the baseline system
(Fig. 3) and ADAM-augmented system (Fig. 4). Both systems
consist of analytics server cluster and DB server cluster.
Among the data analytics operations, k-NN search is offloaded
to be processed by the DB server. Scale-up or -out of DB
server varies depending on the DB size. Sine performance
of processor and memory constituting the servers and k-NN
search offloading flow are precisely considered, our in-house
simulator can accurately predict performance changes accord-
ing to scale-up or -out. For the baseline system, two types of
1 DIMM per channel (DPC) and 2DPC are considered.

To verify our in-house simulator, we make an ADAM proof-
of-concept (PoC) card using SIDEWINDER-100 FPGA [17].
k-NN search is run while increasing the number of ADAM
PoC cards, and the simulaton is also run assuming the same
number of cards as the PoC. Table III shows the results of
the ADAM card PoC and the simulator. For fair comparison,
simulation is run based on the ARM Cortex A53 specification
mounted on SIDEWINDER-100 and resource utilization from
measurement is considered. As shown in Table III, there is no
significant difference (less than 5% error) between the experi-
mental results of ADAM card PoC and the simulator. Through
these results, the consistency of the in-house simulator can be
seen.

2) System Configuration: Baseline DB server configuration
is summarized in Table IV. In the case of the baseline system,
the k-NN search is accelerated through the SIMD hardware
of the host CPU in the DB server. Configuration in Table IV
assumes 1DPC. If 2DPC is supported, total memory capacity
will be doubled and the memory frequency will be reduced to
2666MHz. It is assumed that the ADAM-augmented DB server
has the same CPU as the baseline DB server with two 64GB
DDR memories. For the baseline system, when the size of
DB data exceeds the DB server total memory capacity, the DB
server is expanded (scale-out). For ADAM-augmented system,
when the size of DB data exceeds the memory capacity of the

TABLE IV: Baseline DB server configuration

Frequency [GHz] 3.6
SIMD bit-width 512
CPU # of SIMD units per core 2
configurations # of Cores per CPU 12
Performance per core [GFLOPS] 115.2
CPU performance [GFLOPS] 1382.4
of channels per CPU socket 6
Total memory capacity
conl\iillgll::'(;gons per DB server [GB] 384
Memory frequency [MHz] 2933
Channel bandwidth [GB/s] 23.5
Total memory bandwidth 1408
per DB server [GB/s] !

TABLE V: k-NN search model parameters

top-k 10
Benchmark Feature vector dimension 256
parameters # of feature vectors 228231
Memory requirements [GB] | 256~16384

ADAM card, ADAM cards are added (scale-up). When the
number of ADAM cards exceeds 16, the server is expanded.
3) Workload: As the simulation workload, k-NN search
described in Section III will be used. Since performance,
power, and cost vary according to the number of feature
vectors, it is necessary to conduct experiments in various cases.
k-NN search model parameters are summarized in Table V.

B. Simulation Results

1) Execution Time: Not only the existing Intel Xeon Gold
6256 CPU [14] but also CPU supporting DDRS to be released
in the future are modeled and compared. Difference from the
baseline is that the number of memory channels is increased
to 8, and the frequency of memory is improved to 4800MHz,
which is the DDRS specification (Since CPU what we modeled
for future one has not been released yet, there is no data
related to power consumption or cost, so we did not compare
power consumption and cost.). As shown in Fig. 8 (a), since
ADAM can run k-NN search in complete parallel on a card-
by-card basis, execution time does not increase significantly
even if the feature vector data increases. When feature vector
data size is small, high-end CPU supporting DDR5 memory,
whose computing resources is more powerful than NDP, shows
better performance. However, since ADAM is optimized for
memory-intensive workload, the performance is reversed as
the size of feature vector data increases, and it shows up to
27.4% better performance. ADAM improves performance by
up to 56.7% and 79.8% compared to Intel Xeon Gold 6256
1DPC and 2DPC server, respectively.

2) Power Consumption: As mentioned in IV-D, the baseline
needs to scale-out for large capacity memory, but ADAM only
needs to scale-up to a certain level. In the case of 2DPC, the
memory frequency is low, but instead, the memory capacity
can be doubled, so scale-out is possible with fewer servers
compared to 1DPC. However, there is a performance degrada-
tion (see V-B1). As a scale-up solution, ADAM can achieve up
to 67.3% and up to 46.6% less power consumption compared
to the 2DPC baseline, respectively. If the k-NN feature vector

M [Intel Xeon Gold 6256 1DPC
2.0 = Intel Xeon Gold 6256 2DPC
) I High-end CPU with DDR5 support
£ m— ADAM
o .=
oF 1.5
N
©.2
£51.0
25
0.5
0.0 256 512 1024 2048 4096 8192 16384
Capcity [GB]
(a) Execution time
[Intel Xeon Gold 6256 1DPC
c 1.0 T | | |] E3 Intel Xeon Gold 6256 2DPC
.g EEE ADAM
o
oE 0.8
N3
< c 0.6
£S
504
o
"z
a 0.2
007256 512 1024 2048 4096 8192 16384
Capcity [GB]
(b) Power consumption
o [Intel Xeon Gold 6256 1DPC
1.0]]]] [] == Intel Xeon Gold 6256 2DPC
g BN ADAM
T 20.8
uoos
© Y
£ o
5304
Z0
©
5 0.2
'_
0.0 256 512 1024 2048 4096 8192 16384
Capcity [GB]

(c) Total cost of ownership

Fig. 8: Simulation results according to feature vector data size
change (smaller is better).

data size is small, there may be no benefits to using ADAM.
For example, ADAM-augmented system consumes 8.6% more
power consumption for 256GB case. However, the difference
is very small, and the ADAM-augmented system consumes
better power in other cases.

3) Total Cost of Ownership: Total cost of ownership (TCO)
shows a similar tendency to power consumption. 2DPC with
fewer servers required for scale-out shows better TCO than
1IDPC. ADAM, which does not require scale-out until 16
ADAM cards are added, has obviously better TCO than both
baselines. As in power consumption, when the k-NN search
feature vector data size is small, TCO is relatively large
because a ADAM card should be added to the existing server.
ADAM can achieve up to 68.5% and up to 49.6% less TCO
compared to the 2DPC baseline, respectively.

VI. CONCLUSION

As the importance of data analytics acceleration is growing,
this paper proposes a k-NN search, a representative data

analytics operation, acceleration scheme using ADAM in DB
server. Analysis shows that k-NN search turns out to be a
memory-intensive workload suitable for ADAM processing.
Based on the analysis, k-NN search is accelerated by inserting
ADAM cards in the DB server. Simulations on various k-
NN search feature vector data sizes report that the execution
time, power consumption, and TCO are improved by 56.7%,
67.3%, and 68.5%, respectively, compared to the baseline
system (1DPC case). When comparing a high-end CPU model
supporting DDRS5, even in this case, performance can be
improved up to 27.4%. It is expected that various data analytics
operations other than k-NN search can be accelerated through
ADAM.

REFERENCES

[1] Z. D. Stephens et al., “Big data: astronomical or genomical?” PLoS
biology, vol. 13, no. 7, p. 1002195, 2015.

[2] B. Gu et al., “Biscuit: A framework for near-data processing of big data
workloads,” Proc. ISCA, 2016.

[3] A. Boroumand et al., “Google workloads for consumer devices: Mitigat-
ing data movement bottlenecks,” in Proc. ASPLOS, 2018, pp. 316-331.

[4] S. Williams et al., “Roofline: an insightful visual performance model
for multicore architectures,” Commun. ACM, vol. 52, no. 4, pp. 65-76,
2009.

[5] “AWS AQUA,” https://aws.amazon.com/redshift/features/aqua/,
2021/11/22.

[6] “BigStream,” https://https://bigstream.co/, 2021/11/22.

[7] “Samsung SmartSSD,” https://samsungsemiconductor-us.com/smartssd/,

2021/11/22.

[8] “Hyperacceleration with Bigstream Technology,”
https://info.bigstream.co/hyperacceleration-with-bigstream-technology,
2021/11/22.

[9]1 T. J. Ham et al., “Genesis: a hardware acceleration framework for
genomic data analysis,” in Proc. ISCA. 1EEE, 2020, pp. 254-267.

[10] Y. Wang et al., “A scalable fpga engine for parallel acceleration of
singular value decomposition,” in Proc. ISQED. IEEE, 2020, pp. 370-
376.

[11] S. Salamat et al., “Nascent: Near-storage acceleration of database sort
on smartssd,” in Proc. FPGA, 2021, pp. 262-272.

[12] “Spark SQL,” https://spark.apache.org/sql/, 2021/11/22.

[13] J. Ahn et al., “A scalable processing-in-memory accelerator for parallel
graph processing,” in Proc. ISCA, 2015, pp. 105-117.

[14] “Intel Xeon Gold 6256 Processor,”
https://ark.intel.com/content/www/us/en/ark/products/198655/intel-
xeon-gold-6256-processor-33m-cache-3-60-ghz.html, 2021/11/22.

[15] “Apache Spark,” https://spark.apache.org/, 2021/11/22.

[16] “DGX-A100 Datasheet,” https://images.nvidia.com/aem-
dam/Solutions/Data-Center/nvidia-dgx-al00-datasheet.pdf, 2021/11/22.
[17] “SIDEWINDER-100,” https://fidus.com/wp-

content/uploads/2019/01/Sidewinder p atagheet.pdf, 2021 /11/22.

