Accelerating Data Analytics near
Memory: A k-NN Search Case Study

/"MEMORY \L

FORSZEST
Minho Ha, Joonseop Sim, Jungmin Choi, Donguk Moon, Taeyoung Ahn,

Byungil Koh, Eui-Cheol Lim, and Kyoung Park

|
We Do Technology | SK’PT;ynix

SK Fynix

Motivation

* Growing calls for an efficient approach to process massive volumes of data

Data is growing explosively Processor-centric architecture suffers

from data movement
Annual size of real time data

50
c. @ VP9 VP9
@ O Voulube © O Yoiube
N 40 App' Chrome TensorFlow Video Playback Video Capture
Q Web Browser Mobile
5,
< 30
©
e
]
N
£ 20
)
N
n
10
0 — == = - . I I 62.7% of the total system energy is spent on data movement

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 = Performance Bottleneck

Source: https://www.statista.com/statistics/949144/worldwide-global-datasphere-real-time-data-annual-size/ Source: Amirali Boroumand, “GoogleWorkloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 18

We need to develop a domain-specific system
suitable for processing memory-intensive workload!

MEMORY —
FOR:FEST

https://www.statista.com/statistics/949144/worldwide-global-datasphere-real-time-data-annual-size/

Data Analytics Application: SQL & k-NN Search -——

* Data analytics is a typical example of memory-intensive workload
* Roofline analysis result shows that data analytics operations, SQL operations & kNN, have very low operational
intensity
* High-bandwidth memory support is required to handle these operations

10000
roject, Embedding = 0.2 kNN Search = 1.43

P
Aggregate =0

)]]
)]]
)]]
)]]
)]]
)]]
)]]
)]]
)]]
1000 : : !
) I ' 1
a.)]]
(@))] |
-)]]
[)]]
[G))) |
R | ol
& 100 ! ro
© I 0 ' ' ADAM ——Intel Xeon
£ : . | |
3)]]]
£ | : .
[J]
a)]]]
10 | : |
)]]]
)]]]
)]]]
)]]]
)]]]
)]]]
]]]
]]]]
1 | (] (] 1
Join=1
0.01 0.1 179" 10 100

Ol [FLOPs/Byte]

FOR<=EST

Case Study: k-NN Search -

* k-NN search is an algorithm that finds the k nearest items

* HW characteristics of k-NN search: Need large memory capacity & high memory BW
* It requires a lot of memory access while the operation is simple
* Correlation between performance and memory BW is high

* Experimental observation shows that performance is saturated due to memory BW bound
-> Performance can be improved linearly by expanding the memory channel

* Hundreds of GB or more are required per server to store the DB used in the industry

A.B Measured Value Correlation: 0.993
similarity = cos(f) = ———— Thread # | performance | Max Memory BW
||A | ||B I (ms) (GB/s) Performance Memory BW
Vector dot product 1 130.06 15.2 1 1
A 4 41.52 51.93 3.13 3.42
X X X X X X X X 16 16.58 133.91 7.84 8.81
B 32 1423 156.26 9.14 10.28
I I I I I I L I 64 16.17 155.48 8.04 10.23
A+]+ ER] s :
HW environment SW parameters
- CPU: 2x Intel Icelake Xeon Gold 6338 2.0GHz 32 Core - Dimension: 256
- DRAM: 1TB DDR4 (16x 64GB DDR4-3200) - Batchsize: 128
- SSD: 2x SKH PE8010 1.92TB, 2x SS PM1733 1.92TB (PCle Gen4) - DBsize: 1.6M
- XILINX Sidewider-100 (ARM Cortex A53 4 Core, 32GB DRAM, PCle Gen3x8) - Precision: 4Bytes

FOR<=EST

I
SK”ﬁynix

Possible Solution: Near Data Processing (NDP) -

* NDP is a concept of processing data right next to memory where the data is located

Server with NDP cards

System Performance * ©
Energy Consumption by Data Movement J, ©
Total Cost of Ownership J ©

NDP that fully utilizes the
internal memory bandwidth

L

ICXL/PCIe

Massive memory capacity

Cost-effective scalability

Extremely high internal
memory bandwidth

A

MEMORY —
FOR:FEST

I
SK”ﬁynix

Accelerating Data Analytics Near Memory (ADAM) -

 We propose Accelerating Data Analytics Near Memory (ADAM), which takes the NDP concept for
effective memory-intensive data analytics application processing

ADAM cards

Analystics Server Cluster DB Server Cluster
_____ 5 >
/// \\\ 8 § <>
’ AN © (o)
/ b S
/ \ o o =
/ \ / -’ ©
| \ | £ Y- -+
|
\ — = I
! / b T >
\\ / wv [
N i Z =
NN L /x\
C a —
sQL sQL
Queries Queries
Analytics Analytics
Engine
Data Data Data Data
Ingestion Loader Storage Ingestion Loader
S o /
Baseline k-NN acceleration system ADAM-augmented k-NN acceleration system
MEMORY —

FOR:FEST

ADAM Card Architecture

SK Fynix

« ADAM is an ultimate solution for memory-intensive workloads
» Benefitl) High performance for memory-intensive workload

* Benefit2) Low cost & power

ADAM cards

High-speed
serial interface
(CXL/PCle)

Serial Interface IP
Near Data Processor

: Massive
/ parallelism

High internal —
memory bandwidth

MEMORY
FOR:FEST

Specs
Frequency [GHz] |
SIMD bit-width 1024
NDP core # Cores per NDP 10
configurations Performance per core [GFLOPS] 32
ADAM card performance 320
[GFLOPS]
of channels per NDP 8
, Capacity per ADAM card [GB] 256
D’f? Emﬂlt"? Memory frequency [MHz] 4800
configurations Channel bandwidth [GB/S] 384
ADAM card memory bandwidth
[GBIs] 307.2
Serial interface CXL lanes per ADAM card 4
CXL bandwidth [GB/s] 16

configurations

* Above specifications are performance assumptions at the future product level

I,

 ADAM cards communicate with the Host through the ADAM APIs

Memory management APIs k-NN Search Acceleration APl (KNN_scan())
ADAM Cards
0x0000_0000

float Query_0[8], Query_1[16]; 0%0000 00'267----3-2?---- DB Server
float *arrQ, *arr1; Pointer | Physical address | Size ' T 648
arr0 = ADAM_malloc (sizeof(float)*8);~~ 0 0x0000_0000 32B |
If (arr0 == NULL) exit(1); K 0x0000_0020 | 64B |--050000_0060 |- — - ——————- m
arrl = ADAM_malloc (sizeof(ﬂoat)*16);f":
If (arr1 == NULL) exit(1);

< Pseudo code > < ADAM memory map > < ADAM memory >

ADAM_malloc()

float Query_0[8], Query_1[16]; 0x0000_0000 :
float *arr0, *arr1; 0><0000,-ﬂ‘(')'"2"(')3 __________ Mailbox
arr0 = ADAM_malloc (sizeof(float)*g); | Pointer | Physical address | Size B 64B
If (@rr0 == NULL) exit(1);
arrl = ADAM_malloc (sizeof(float)*16); ! 0x0000 0020 | 648 | 0x0000.0060 === ====~~1
If (arr1 == NULL) exit(1);
ADAM _free(arr0); ;

< Pseudo code > < ADAM memory map > < ADAM memory >

ADAM_free() API functions Format
. 0x0000_0000 - ; ;
;:g:i Query OBl Queny 1116l Memory allocation ADAM malloc (int size)
: i _ . _ 0x0000_0020 F======="=1 -

arrQ = ADAM_maIIog (sizeof(float)*8); Pointer | Physical address | Size 64B FI'BE mMem ‘}r}'r ADPLM_fIEE { fl oat = J_l'l'dEX }
17 (@0 == NULL) exit(1); 1 0 0x0000_0060 | 64B ["0x0000 0060 |- — — — ————_ i ADAM realloc (float =index,
arrl = ADAM_malloc (sizeof(float)*16);/ 3 0x0000 0020) Re-allocation . .
If arr1 == NULL) exit(1); x0000_ - 64B int s1ize)
ADAM_realloc(arr0, sizeof(fload)*16); 0x0000_00A0 RE:QUESt K-NN search KENN_scan (int tabkle_ 1D,

< Pseudo code > < ADAM memory map > < ADAM memory > and read results int fe ature_ID, int K,

ADAM_realloc() float* array, float xindex)
MEMORY —

FOR:FEST

- e
Evaluation Results SK Tynix

s
* System-level simulation on various feature vector data sizes shows up to 56.7%, 67.3%, and 68.5%

improvements in performance, power, and cost, respectively, compared to baseline system

Performance Power
[Intel Xeon Gold 6256 1DPC [Intel Xeon Gold 6256 1DPC
2.0 I Intel Xeon Gold 6256 2DPC = 1.0 I Intel Xeon Gold 6256 2DPC
a_, B High-end CPU with DDRS support ° BN ADAM
£ NN ADAM 20.8
oF 15 DET
N N 2
©.2 < < 0.6
€310 €S
ek S go4
“os5 5
. a 0.2
0.0 256 512 1024 2048 4096 8192 16384 0.0 256 512 1024 2048 4096 8192 16384
Capcity [GB] Capcity [GB]
Cost
o [Intel Xeon Gold 6256 1DPC
1.0 = Intel Xeon Gold 6256 2DPC
g BN ADAM
0.8
B E
3006
©'5
28 0.4
©
5 0.2
|_
007256 512 1024 2048 40906 8192 16384
Capcity [GB]
MEMORY

FOR:FEST

I
SK”ﬁynix

1st Proof of Concept —

* We implemented a commercial FPGA-based PoC and actually ran the k-NN search acceleration
* Host CPU manages the entire applications and offloads memory-intensive workloads to FPGA PoCs
» Offloaded memory-intensive workloads are accelerated by optimized HW and kernels
* The overall performance improves as the number of FPGA PoC cards increases up to 6.52x

Demo system with FPGA PoC K-NN search workload PoC Performance

__

Host x86 Server

Feature Vector Extraction 0.8

(e.g. CNN)

1.67x

0.6 3.30x

6.52x
0.4

v

) I
v
0 .

CPU only CPU +Dualcard CPU+Quadcard CPU +Octacard

Normalized Execution Time

Offloading Memory-Intensive Workloads
4
N

Sidewinder-100 FPGA board

MEMORY —
FOR:FEST

9
SKh

Future Plan L

* In addition to k-NN search, we plan to increase the coverage of NDP solution with other machine learning
functions, Apache Spark SQL operations (aggregate/filter) and data compression/decompression

* Additional hardware accelerator modules are being planned to improve processing performance

* Considering the explosive growth of processed data, we plan to ultimately maximize memory capacity and
processing performance by loading multiple NDP solution cards in the Disaggregated Memory Pool

FOR<=EST

9
SKh

Conclusion S

* A domain-specific system is required to effectively handle memory-intensive workloads such as data
analytics applications

* Accordingly, we propose Accelerating Data Analytics near Memory (ADAM), a solution using the near
data processing (NDP) concept

* As a result of accelerating k-NN search, a representative data analytics application, through a system
equipped with ADAM, performance is improved by 56.7%, power consumption by 67.3%, and cost by
68.5% compared to the existing CPU SIMD acceleration

* We implemented the first FPGA-based PoC and plan to further improve it

FOR<=EST

	슬라이드 번호 1
	Motivation
	Data Analytics Application: SQL & k-NN Search
	Case Study: k-NN Search
	Possible Solution: Near Data Processing (NDP)
	Accelerating Data Analytics Near Memory (ADAM)
	ADAM Card Architecture
	ADAM API
	Evaluation Results
	1st Proof of Concept
	Future Plan
	Conclusion

