Accelerating Data Analytics near Memory: A k-NN Search Case Study

M E M O R Y FOR **E**ST

Minho Ha, Joonseop Sim, Jungmin Choi, Donguk Moon, Taeyoung Ahn, Byungil Koh, Eui-Cheol Lim, and Kyoung Park

Motivation

Growing calls for an efficient approach to process massive volumes of data

Processor-centric architecture suffers from data movement

62.7% of the total system energy is spent on data movement

→ Performance Bottleneck

Source: https://www.statista.com/statistics/949144/worldwide-global-datasphere-real-time-data-annual-size/

Source: Amirali Boroumand, "GoogleWorkloads for Consumer Devices: Mitigating Data Movement Bottlenecks," ASPLOS`18

We need to develop a domain-specific system suitable for processing memory-intensive workload!

Data Analytics Application: SQL & k-NN Search

- Data analytics is a typical example of memory-intensive workload
 - Roofline analysis result shows that data analytics operations, SQL operations & kNN, have very low operational intensity
 - High-bandwidth memory support is required to handle these operations

Roofline Analysis of ADAM and Intel Xeon

Case Study: k-NN Search

- k-NN search is an algorithm that finds the k nearest items
- HW characteristics of k-NN search: Need large memory capacity & high memory BW
 - It requires a lot of memory access while the operation is simple
 - Correlation between performance and memory BW is high
 - Experimental observation shows that performance is saturated due to memory BW bound
 → Performance can be improved linearly by expanding the memory channel
 - Hundreds of GB or more are required per server to store the DB used in the industry

k-NN search formula

similarity =
$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

k-NN search performance evaluation results (AVX-512)

Thread #	Measured Value		Correlation: 0.993	
	Performance (ms)	Max Memory BW (GB/s)	Performance	Memory BW
1	130.06	15.2	1	1
4	41.52	51.93	3.13	3.42
16	16.58	133.91	7.84	8.81
32	14.23	156.26	9.14	10.28
64	16.17	155.48	8.04	10.23

- * HW environment
- CPU: 2x Intel Icelake Xeon Gold 6338 2.0GHz 32 Core
- DRAM: 1TB DDR4 (16x 64GB DDR4-3200)
- SSD: 2x SKH PE8010 1.92TB, 2x SS PM1733 1.92TB (PCIe Gen4)
- XILINX Sidewider-100 (ARM Cortex A53 4 Core, 32GB DRAM, PCIe Gen3x8)
- * SW parameters
- ----
- Dimension: 256
- Batch size: 128DB size: 1.6M
- Precision: 4Bytes

Possible Solution: Near Data Processing (NDP)

NDP is a concept of processing data right next to memory where the data is located

Accelerating Data Analytics Near Memory (ADAM)

• We propose Accelerating Data Analytics Near Memory (ADAM), which takes the NDP concept for effective memory-intensive data analytics application processing

ADAM cards

Baseline k-NN acceleration system

ADAM-augmented k-NN acceleration system

ADAM Card Architecture

- ADAM is an ultimate solution for memory-intensive workloads
 - Benefit1) High performance for memory-intensive workload
 - Benefit2) Low cost & power

Specs

	Frequency [GHz]	1
	SIMD bit-width	1024
NDP core	# Cores per NDP	10
configurations	Performance per core [GFLOPS]	32
	ADAM card performance [GFLOPS]	320
	# of channels per NDP	8
Memory	Capacity per ADAM card [GB]	256
configurations	Memory frequency [MHz]	4800
comigurations	Channel bandwidth [GB/s]	38.4
	ADAM card memory bandwidth [GB/s]	307.2
Serial interface	CXL lanes per ADAM card	4
configurations	CXL bandwidth [GB/s]	16

^{*} Above specifications are performance assumptions at the future product level

ADAM API

ADAM cards communicate with the Host through the ADAM APIs

Memory management APIs

k-NN Search Acceleration API (KNN_scan())

API functions	Format	
Memory allocation	ADAM_malloc (int size)	
Free memory	ADAM_free (float *index)	
Re-allocation	ADAM_realloc (float *index,	
Tto unocuron	int size)	
Request k-NN search	KNN_scan (int table_ID,	
and read results	int feature_ID, int K,	
and read results	float* array, float *index)	

Evaluation Results

• System-level simulation on various feature vector data sizes shows up to 56.7%, 67.3%, and 68.5% improvements in performance, power, and cost, respectively, compared to baseline system

1st Proof of Concept

- We implemented a commercial FPGA-based PoC and actually ran the k-NN search acceleration
 - Host CPU manages the entire applications and offloads memory-intensive workloads to FPGA PoCs
 - Offloaded memory-intensive workloads are accelerated by optimized HW and kernels
 - The overall performance improves as the number of FPGA PoC cards increases up to 6.52x

Future Plan

- In addition to k-NN search, we plan to increase the coverage of NDP solution with other machine learning functions, Apache Spark SQL operations (aggregate/filter) and data compression/decompression
- Additional hardware accelerator modules are being planned to improve processing performance
- Considering the explosive growth of processed data, we plan to ultimately maximize memory capacity and processing performance by loading multiple NDP solution cards in the *Disaggregated Memory Pool*

Conclusion

- A domain-specific system is required to effectively handle memory-intensive workloads such as data analytics applications
- Accordingly, we propose Accelerating Data Analytics near Memory (ADAM), a solution using the near data processing (NDP) concept
- As a result of accelerating k-NN search, a representative data analytics application, through a system equipped with ADAM, performance is improved by 56.7%, power consumption by 67.3%, and cost by 68.5% compared to the existing CPU SIMD acceleration
- We implemented the first FPGA-based PoC and plan to further improve it