
Minho Ha, Joonseop Sim, Jungmin Choi, Donguk Moon, Taeyoung Ahn,
Byungil Koh, Eui-Cheol Lim, and Kyoung Park

Accelerating Data Analytics near
Memory: A k-NN Search Case Study

Motivation
• Growing calls for an efficient approach to process massive volumes of data

0

10

20

30

40

50

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Si
ze

 in
 z

et
ta

by
te

s

Annual size of real time data

Data is growing explosively Processor-centric architecture suffers
from data movement

62.7% of the total system energy is spent on data movement
 Performance Bottleneck

CPUCPU
CPU

CPU
L1 L2 DRAM

Chrome
Web Browser

TensorFlow
Mobile

Video CaptureVideo Playback

Test
App.

Source: https://www.statista.com/statistics/949144/worldwide-global-datasphere-real-time-data-annual-size/ Source: Amirali Boroumand, “GoogleWorkloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS`18

We need to develop a domain-specific system
suitable for processing memory-intensive workload!

https://www.statista.com/statistics/949144/worldwide-global-datasphere-real-time-data-annual-size/

Data Analytics Application: SQL & k-NN Search
• Data analytics is a typical example of memory-intensive workload

• Roofline analysis result shows that data analytics operations, SQL operations & kNN, have very low operational
intensity

• High-bandwidth memory support is required to handle these operations

Roofline Analysis of ADAM and Intel Xeon

1

10

100

1000

10000

0.01 0.1 1 10 100

Pe
rf

or
m

an
ce

 [G
FL

O
PS

]

OI [FLOPs/Byte]

ADAM Intel Xeon

Project,
Aggregate ≈ 0

Embedding = 0.2

Filter = 0.83

Join = 1

kNN Search = 1.43

Case Study: k-NN Search
• k-NN search is an algorithm that finds the k nearest items

• HW characteristics of k-NN search: Need large memory capacity & high memory BW
• It requires a lot of memory access while the operation is simple
• Correlation between performance and memory BW is high
• Experimental observation shows that performance is saturated due to memory BW bound
 Performance can be improved linearly by expanding the memory channel

• Hundreds of GB or more are required per server to store the DB used in the industry

Thread #

Measured Value Correlation: 0.993

Performance
(ms)

Max Memory BW
(GB/s) Performance Memory BW

1 130.06 15.2 1 1

4 41.52 51.93 3.13 3.42

16 16.58 133.91 7.84 8.81

32 14.23 156.26 9.14 10.28

64 16.17 155.48 8.04 10.23

k-NN search performance evaluation results (AVX-512)

* HW environment
- CPU: 2x Intel Icelake Xeon Gold 6338 2.0GHz 32 Core
- DRAM: 1TB DDR4 (16x 64GB DDR4-3200)
- SSD: 2x SKH PE8010 1.92TB, 2x SS PM1733 1.92TB (PCIe Gen4)
- XILINX Sidewider-100 (ARM Cortex A53 4 Core, 32GB DRAM, PCIe Gen3x8)

k-NN search formula

A

B

Vector dot product 예시 (D=8 case)

* SW parameters
- Dimension: 256
- Batch size: 128
- DB size: 1.6M
- Precision: 4Bytes

Possible Solution: Near Data Processing (NDP)
• NDP is a concept of processing data right next to memory where the data is located

CXL/PCIeNDP that fully utilizes the
internal memory bandwidth

Extremely high internal
memory bandwidth

Massive memory capacity

Cost-effective scalability

Server with NDP cards
System Performance ↑ 
Energy Consumption by Data Movement ↓ 
Total Cost of Ownership ↓ 

Accelerating Data Analytics Near Memory (ADAM)
• We propose Accelerating Data Analytics Near Memory (ADAM), which takes the NDP concept for

effective memory-intensive data analytics application processing

Analystics Server Cluster DB Server Cluster

SQL
Queries

Data
Ingestion

Data
Loader

Query
Engine

Analytics
Engine

CPU

Memory

Storage

SIMD

Scalar

①

④

②

③

Baseline k-NN acceleration system ADAM-augmented k-NN acceleration system

SQL
Queries

Data
Ingestion

Data
Loader

Query
Engine

Analytics
Engine

CPU

Memory

Storage

NDP
Mem

Mem

Mem

Mem

...

...

NDP
Mem

Mem

Mem

Mem

...

...

NDP
Mem

Mem

Mem

Mem

...

...

...

①

②
 ③

 ⑥

④

⑤

N
ea

r
D

at
a

P
ro

ce
ss

o
r

Se
ri
al

 I
n
te

rf
ac

e
IP

M
em

or
y

Mem

N
ea

r
D

at
a

P
ro

ce
ss

o
r

Se
ri
al

 I
n
te

rf
ac

e
IP

M
em

or
y

Mem

N
ea

r
D

at
a

P
ro

ce
ss

o
r

Se
ri
al

 I
n
te

rf
ac

e
IP

M
em

or
y

Mem

N
ea

r
D

at
a

P
ro

ce
ss

o
r

Se
ri
al

 I
n
te

rf
ac

e
IP

M
em

or
y

ADAM cards

ADAM Card Architecture
• ADAM is an ultimate solution for memory-intensive workloads

• Benefit1) High performance for memory-intensive workload
• Benefit2) Low cost & power

N
ea

r
D

at
a

P
ro

ce
ss

o
r

Se
ri
al

 I
n
te

rf
ac

e
IP

M
em

or
y

Mem
N

ea
r

D
at

a
P
ro

ce
ss

o
r

Se
ri
al

 I
n
te

rf
ac

e
IP

M
em

or
y

Mem

N
ea

r
D

at
a

P
ro

ce
ss

o
r

Se
ri
al

 I
n
te

rf
ac

e
IP

M
em

or
y

High internal
memory bandwidth

Massive
parallelism

Mem

N
ea

r
D

at
a

P
ro

ce
ss

o
r

Se
ri
al

 I
n
te

rf
ac

e
IP

M
em

or
y

Huge memory
capacityHigh-speed

serial interface
(CXL/PCIe)

* Above specifications are performance assumptions at the future product level

ADAM cards Specs

ADAM API
• ADAM cards communicate with the Host through the ADAM APIs

< Pseudo code > < ADAM memory map >

float Query_0[8], Query_1[16];
float *arr0, *arr1;

arr0 = ADAM_malloc (sizeof(float)*8);
If (arr0 == NULL) exit(1);

arr1 = ADAM_malloc (sizeof(float)*16);
If (arr1 == NULL) exit(1);

Pointer
0
1

Physical address
0x0000_0000
0x0000_0020

Size
32B
64B

32B

64B

0x0000_0000

0x0000_0020

0x0000_0060

< ADAM memory >

< Pseudo code > < ADAM memory map >

float Query_0[8], Query_1[16];
float *arr0, *arr1;

arr0 = ADAM_malloc (sizeof(float)*8);
If (arr0 == NULL) exit(1);

arr1 = ADAM_malloc (sizeof(float)*16);
If (arr1 == NULL) exit(1);

ADAM_free(arr0);

Pointer
0
1

Physical address
0x0000_0000
0x0000_0020

Size
32B
64B

64B

0x0000_0000

0x0000_0020

0x0000_0060

< ADAM memory >

< Pseudo code > < ADAM memory map >

float Query_0[8], Query_1[16];
float *arr0, *arr1;

arr0 = ADAM_malloc (sizeof(float)*8);
If (arr0 == NULL) exit(1);

arr1 = ADAM_malloc (sizeof(float)*16);
If (arr1 == NULL) exit(1);

ADAM_realloc(arr0, sizeof(fload)*16);

Pointer

0

Physical address

0x0000_0000
0x0000_0060

Size

32B
64B

64B

64B

0x0000_0000

0x0000_0020

0x0000_0060

1 0x0000_0020 64B

0x0000_00A0

< ADAM memory >

Memory management APIs

ADAM_malloc()

ADAM_free()

ADAM_realloc()

NDP

C
X
L

IP Feature
Vector
Data

Input
Query Data

Result Data

Memory

Request

Response

Mailbox

DB Server

Memory

ADAM Cards

NDP

C
X
L

IP Feature
Vector
Data

Input
Query Data

Result Data

Memory

Request

Response

Mailbox

NDP

C
X
L

IP Feature
Vector
Data

Input
Query Data

Result Data

Memory

Request

Response

Mailbox

NDP

C
X
L

IP

Feature
Vector
Data

Input
Query Data

Result Data

Memory

Request

Response

Mailbox

CXL

①

②

③④
CPU

⑤
⑥

k-NN Search Acceleration API (KNN_scan())

Evaluation Results
• System-level simulation on various feature vector data sizes shows up to 56.7%, 67.3%, and 68.5%

improvements in performance, power, and cost, respectively, compared to baseline system
Performance Power

Cost

1st Proof of Concept
• We implemented a commercial FPGA-based PoC and actually ran the k-NN search acceleration

• Host CPU manages the entire applications and offloads memory-intensive workloads to FPGA PoCs
• Offloaded memory-intensive workloads are accelerated by optimized HW and kernels
• The overall performance improves as the number of FPGA PoC cards increases up to 6.52x

K-NN search workload

Memory-Intensive Layer (GB ~ TB)

Compute-Intensive Layer

K-NN Search (cosine similarity)

Feature Vector Extraction
(e.g. CNN)

Demo system with FPGA PoC

Host x86 Server

PCIe

Sidewinder-100 FPGA board

O
ffl

oa
di

ng
 M

em
or

y-
In

te
ns

iv
e

W
or

kl
oa

ds

1

0.8

0.6

0.4

0.2

0

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

CPU only CPU + Dual card CPU + Quad card CPU + Octa card

1.67x

3.30x

6.52x

PoC Performance

Future Plan
• In addition to k-NN search, we plan to increase the coverage of NDP solution with other machine learning

functions, Apache Spark SQL operations (aggregate/filter) and data compression/decompression

• Additional hardware accelerator modules are being planned to improve processing performance

• Considering the explosive growth of processed data, we plan to ultimately maximize memory capacity and
processing performance by loading multiple NDP solution cards in the Disaggregated Memory Pool

Conclusion
• A domain-specific system is required to effectively handle memory-intensive workloads such as data

analytics applications

• Accordingly, we propose Accelerating Data Analytics near Memory (ADAM), a solution using the near
data processing (NDP) concept

• As a result of accelerating k-NN search, a representative data analytics application, through a system
equipped with ADAM, performance is improved by 56.7%, power consumption by 67.3%, and cost by
68.5% compared to the existing CPU SIMD acceleration

• We implemented the first FPGA-based PoC and plan to further improve it

	슬라이드 번호 1
	Motivation
	Data Analytics Application: SQL & k-NN Search
	Case Study: k-NN Search
	Possible Solution: Near Data Processing (NDP)
	Accelerating Data Analytics Near Memory (ADAM)
	ADAM Card Architecture
	ADAM API
	Evaluation Results
	1st Proof of Concept
	Future Plan
	Conclusion

