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Motivation
• Growing calls for an efficient approach to process massive volumes of data 
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Annual size of real time data

Data is growing explosively Processor-centric architecture suffers 
from data movement

62.7% of the total system energy is spent on data movement 
 Performance Bottleneck  
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Source: https://www.statista.com/statistics/949144/worldwide-global-datasphere-real-time-data-annual-size/ Source: Amirali Boroumand, “GoogleWorkloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS`18 

We need to develop a domain-specific system 
suitable for processing memory-intensive workload!

https://www.statista.com/statistics/949144/worldwide-global-datasphere-real-time-data-annual-size/


Data Analytics Application: SQL & k-NN Search
• Data analytics is a typical example of memory-intensive workload

• Roofline analysis result shows that data analytics operations, SQL operations & kNN, have very low operational 
intensity

• High-bandwidth memory support is required to handle these operations

Roofline Analysis of ADAM and Intel Xeon
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Case Study: k-NN Search
• k-NN search is an algorithm that finds the k nearest items

• HW characteristics of k-NN search: Need large memory capacity & high memory BW
• It requires a lot of memory access while the operation is simple
• Correlation between performance and memory BW is high
• Experimental observation shows that performance is saturated due to memory BW bound 
 Performance can be improved linearly by expanding the memory channel

• Hundreds of GB or more are required per server to store the DB used in the industry

Thread #

Measured Value Correlation: 0.993

Performance 
(ms)

Max Memory BW
(GB/s) Performance Memory BW

1 130.06 15.2 1 1

4 41.52 51.93 3.13 3.42

16 16.58 133.91 7.84 8.81

32 14.23 156.26 9.14 10.28

64 16.17 155.48 8.04 10.23

k-NN search performance evaluation results (AVX-512)

* HW environment
- CPU: 2x Intel Icelake Xeon Gold 6338 2.0GHz 32 Core
- DRAM: 1TB DDR4 (16x 64GB DDR4-3200)
- SSD: 2x SKH PE8010 1.92TB, 2x SS PM1733 1.92TB (PCIe Gen4)
- XILINX Sidewider-100 (ARM Cortex A53 4 Core, 32GB DRAM, PCIe Gen3x8)

k-NN search formula

A

B

Vector dot product 예시 (D=8 case)

* SW parameters 
- Dimension: 256
- Batch size: 128
- DB size: 1.6M
- Precision: 4Bytes



Possible Solution: Near Data Processing (NDP)
• NDP is a concept of processing data right next to memory where the data is located

CXL/PCIeNDP that fully utilizes the 
internal memory bandwidth

Extremely high internal 
memory bandwidth 

Massive memory capacity

Cost-effective scalability

Server with NDP cards
System Performance ↑ 
Energy Consumption by Data Movement ↓ 
Total Cost of Ownership ↓ 



Accelerating Data Analytics Near Memory (ADAM)
• We propose Accelerating Data Analytics Near Memory (ADAM), which takes the NDP concept for 

effective memory-intensive data analytics application processing
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ADAM Card Architecture
• ADAM is an ultimate solution for memory-intensive workloads 

• Benefit1) High performance for memory-intensive workload
• Benefit2) Low cost & power
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serial interface 
(CXL/PCIe)

* Above specifications are performance assumptions at the future product level

ADAM cards Specs



ADAM API
• ADAM cards communicate with the Host through the ADAM APIs

< Pseudo code > < ADAM memory map >

float Query_0[8], Query_1[16];
float *arr0, *arr1; 

arr0 = ADAM_malloc (sizeof(float)*8);
If (arr0 == NULL) exit(1); 

arr1 = ADAM_malloc (sizeof(float)*16);
If (arr1 == NULL) exit(1); 

Pointer
0
1

Physical address
0x0000_0000
0x0000_0020

Size
32B
64B

32B

64B

0x0000_0000

0x0000_0020

0x0000_0060

< ADAM memory >

< Pseudo code > < ADAM memory map >

float Query_0[8], Query_1[16];
float *arr0, *arr1; 

arr0 = ADAM_malloc (sizeof(float)*8);
If (arr0 == NULL) exit(1); 

arr1 = ADAM_malloc (sizeof(float)*16);
If (arr1 == NULL) exit(1);

ADAM_free(arr0); 

Pointer
0
1

Physical address
0x0000_0000
0x0000_0020

Size
32B
64B

64B

0x0000_0000

0x0000_0020

0x0000_0060

< ADAM memory >

< Pseudo code > < ADAM memory map >

float Query_0[8], Query_1[16];
float *arr0, *arr1; 

arr0 = ADAM_malloc (sizeof(float)*8);
If (arr0 == NULL) exit(1); 

arr1 = ADAM_malloc (sizeof(float)*16);
If (arr1 == NULL) exit(1);

ADAM_realloc(arr0, sizeof(fload)*16); 

Pointer

0

Physical address

0x0000_0000
0x0000_0060

Size

32B
64B

64B

64B

0x0000_0000

0x0000_0020

0x0000_0060

1 0x0000_0020 64B

0x0000_00A0

< ADAM memory >

Memory management APIs

ADAM_malloc()

ADAM_free()

ADAM_realloc()

NDP

C
X
L 

IP Feature 
Vector 
Data

Input 
Query Data

Result Data

Memory

Request

Response

Mailbox

DB Server

Memory

ADAM Cards

NDP

C
X
L 

IP Feature 
Vector 
Data

Input 
Query Data

Result Data

Memory

Request

Response

Mailbox

NDP

C
X
L 

IP Feature 
Vector 
Data

Input 
Query Data

Result Data

Memory

Request

Response

Mailbox

NDP

C
X
L 

IP

Feature 
Vector 
Data

Input 
Query Data

Result Data

Memory

Request

Response

Mailbox

CXL

①

②

③④
CPU

⑤
⑥

k-NN Search Acceleration API (KNN_scan())



Evaluation Results
• System-level simulation on various feature vector data sizes shows up to 56.7%, 67.3%, and 68.5% 

improvements in performance, power, and cost, respectively, compared to baseline system
Performance Power

Cost



1st Proof of Concept
• We implemented a commercial FPGA-based PoC and actually ran the k-NN search acceleration

• Host CPU manages the entire applications and offloads memory-intensive workloads to FPGA PoCs
• Offloaded memory-intensive workloads are accelerated by optimized HW and kernels
• The overall performance improves as the number of FPGA PoC cards increases up to 6.52x

K-NN search workload

Memory-Intensive Layer (GB ~ TB)

Compute-Intensive Layer

K-NN Search (cosine similarity)

Feature Vector Extraction
(e.g. CNN)

Demo system with FPGA PoC

Host x86 Server

PCIe

Sidewinder-100 FPGA board
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Future Plan
• In addition to k-NN search, we plan to increase the coverage of NDP solution with other machine learning 

functions, Apache Spark SQL operations (aggregate/filter) and data compression/decompression

• Additional hardware accelerator modules are being planned to improve processing performance

• Considering the explosive growth of processed data, we plan to ultimately maximize memory capacity and 
processing performance by loading multiple NDP solution cards in the Disaggregated Memory Pool



Conclusion
• A domain-specific system is required to effectively handle memory-intensive workloads such as data 

analytics applications

• Accordingly, we propose Accelerating Data Analytics near Memory (ADAM), a solution using the near 
data processing (NDP) concept

• As a result of accelerating k-NN search, a representative data analytics application, through a system 
equipped with ADAM, performance is improved by 56.7%, power consumption by 67.3%, and cost by 
68.5% compared to the existing CPU SIMD acceleration

• We implemented the first FPGA-based PoC and plan to further improve it
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