Accelerating Data Analytics near
Memory: A k-NN Search Case Study
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Motivation

* Growing calls for an efficient approach to process massive volumes of data

Data is growing explosively Processor-centric architecture suffers

from data movement
Annual size of real time data
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Source: https://www.statista.com/statistics/949144/worldwide-global-datasphere-real-time-data-annual-size/  Source: Amirali Boroumand, “GoogleWorkloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 18

We need to develop a domain-specific system
suitable for processing memory-intensive workload!
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Data Analytics Application: SQL & k-NN Search -——

* Data analytics is a typical example of memory-intensive workload
* Roofline analysis result shows that data analytics operations, SQL operations & kNN, have very low operational
intensity
* High-bandwidth memory support is required to handle these operations
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Case Study: k-NN Search -

* k-NN search is an algorithm that finds the k nearest items

* HW characteristics of k-NN search: Need large memory capacity & high memory BW
* It requires a lot of memory access while the operation is simple
* Correlation between performance and memory BW is high

* Experimental observation shows that performance is saturated due to memory BW bound
-> Performance can be improved linearly by expanding the memory channel

* Hundreds of GB or more are required per server to store the DB used in the industry

A.B Measured Value Correlation: 0.993
similarity = cos(f) = ———— Thread # | performance | Max Memory BW
||A | ||B I (ms) (GB/s) Performance Memory BW
Vector dot product 1 130.06 15.2 1 1
A 4 41.52 51.93 3.13 3.42
X X X X X X X X 16 16.58 133.91 7.84 8.81
B 32 1423 156.26 9.14 10.28
I I I I I I L I 64 16.17 155.48 8.04 10.23
A+ ]+ ER] s :
HW environment SW parameters
- CPU: 2x Intel Icelake Xeon Gold 6338 2.0GHz 32 Core - Dimension: 256
- DRAM: 1TB DDR4 (16x 64GB DDR4-3200) - Batchsize: 128
- SSD: 2x SKH PE8010 1.92TB, 2x SS PM1733 1.92TB (PCle Gen4) - DBsize: 1.6M
- XILINX Sidewider-100 (ARM Cortex A53 4 Core, 32GB DRAM, PCle Gen3x8) - Precision: 4Bytes
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Possible Solution: Near Data Processing (NDP) -

* NDP is a concept of processing data right next to memory where the data is located

Server with NDP cards

System Performance * ©
Energy Consumption by Data Movement J, ©
Total Cost of Ownership J ©

NDP that fully utilizes the
internal memory bandwidth

L

ICXL/PCIe

Massive memory capacity

Cost-effective scalability

Extremely high internal
memory bandwidth

A
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Accelerating Data Analytics Near Memory (ADAM) -

 We propose Accelerating Data Analytics Near Memory (ADAM), which takes the NDP concept for
effective memory-intensive data analytics application processing

ADAM cards
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ADAM Card Architecture
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« ADAM is an ultimate solution for memory-intensive workloads
» Benefitl) High performance for memory-intensive workload

* Benefit2) Low cost & power

ADAM cards

High-speed
serial interface
(CXL/PCle)

Serial Interface IP
Near Data Processor

: Massive
/ parallelism

High internal —
memory bandwidth
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Specs
Frequency [GHz] |
SIMD bit-width 1024
NDP core # Cores per NDP 10
configurations Performance per core [GFLOPS] 32
ADAM card performance 320
[GFLOPS]
# of channels per NDP 8
, Capacity per ADAM card [GB] 256
D’f? Emﬂlt"? Memory frequency [MHz] 4800
configurations Channel bandwidth [GB/S] 384
ADAM card memory bandwidth
[GBIs] 307.2
Serial interface CXL lanes per ADAM card 4
CXL bandwidth [GB/s] 16

configurations

* Above specifications are performance assumptions at the future product level
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 ADAM cards communicate with the Host through the ADAM APIs

Memory management APIs k-NN Search Acceleration APl (KNN_scan())
ADAM Cards
0x0000_0000

float Query_0[8], Query_1[16]; 0%0000 00'267----3-2?---- DB Server
float *arrQ, *arr1; Pointer | Physical address | Size ' T 648
arr0 = ADAM_malloc (sizeof(float)*8);~~ 0 0x0000_0000 32B |
If (arr0 == NULL) exit(1); K 0x0000_0020 | 64B |--050000_0060 |- — - ——————- m
arrl = ADAM_malloc (sizeof(ﬂoat)*16);f":
If (arr1 == NULL) exit(1);

< Pseudo code > < ADAM memory map > < ADAM memory >

ADAM_malloc()

float Query_0[8], Query_1[16]; 0x0000_0000 :
float *arr0, *arr1; 0><0000,-ﬂ‘(')'"2"(')3 __________ Mailbox
arr0 = ADAM_malloc (sizeof(float)*g); | Pointer | Physical address | Size B 64B
If (@rr0 == NULL) exit(1);
arrl = ADAM_malloc (sizeof(float)*16); ! 0x0000 0020 | 648 | 0x0000.0060 === ====~~1
If (arr1 == NULL) exit(1);
ADAM _free(arr0); ;

< Pseudo code > < ADAM memory map > < ADAM memory >

ADAM_free() API functions Format
. 0x0000_0000 - ; ;
;:g:i Query OBl Queny 1116l Memory allocation ADAM malloc (int size)
: i _ . _ 0x0000_0020 F======="=1 -

arrQ = ADAM_maIIog (sizeof(float)*8); Pointer | Physical address | Size 64B FI'BE mMem ‘}r}'r ADPLM_fIEE { fl oat = J_l'l'dEX }
17 (@0 == NULL) exit(1); 1 0 0x0000_0060 | 64B ["0x0000 0060 |- — — — ————_ i ADAM realloc (float =index,
arrl = ADAM_malloc (sizeof(float)*16);/ 3 0x0000 0020 ) Re-allocation . .
If arr1 == NULL) exit(1); x0000_ - 64B int s1ize)
ADAM_realloc(arr0, sizeof(fload)*16); 0x0000_00A0 RE:QUESt K-NN search KENN_scan (int tabkle_ 1D,

< Pseudo code > < ADAM memory map > < ADAM memory > and read results int fe ature_ID, int K,

ADAM_realloc() float* array, float xindex)
MEMORY —
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Evaluation Results SK Tynix

s
* System-level simulation on various feature vector data sizes shows up to 56.7%, 67.3%, and 68.5%

improvements in performance, power, and cost, respectively, compared to baseline system
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1st Proof of Concept —

* We implemented a commercial FPGA-based PoC and actually ran the k-NN search acceleration
* Host CPU manages the entire applications and offloads memory-intensive workloads to FPGA PoCs
» Offloaded memory-intensive workloads are accelerated by optimized HW and kernels
* The overall performance improves as the number of FPGA PoC cards increases up to 6.52x

Demo system with FPGA PoC K-NN search workload PoC Performance

__________________________________________

Host x86 Server

Feature Vector Extraction 0.8

(e.g. CNN)
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Normalized Execution Time

Offloading Memory-Intensive Workloads
4
N

Sidewinder-100 FPGA board
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Future Plan L

* In addition to k-NN search, we plan to increase the coverage of NDP solution with other machine learning
functions, Apache Spark SQL operations (aggregate/filter) and data compression/decompression

* Additional hardware accelerator modules are being planned to improve processing performance

* Considering the explosive growth of processed data, we plan to ultimately maximize memory capacity and
processing performance by loading multiple NDP solution cards in the Disaggregated Memory Pool
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Conclusion S

* A domain-specific system is required to effectively handle memory-intensive workloads such as data
analytics applications

* Accordingly, we propose Accelerating Data Analytics near Memory (ADAM), a solution using the near
data processing (NDP) concept

* As a result of accelerating k-NN search, a representative data analytics application, through a system
equipped with ADAM, performance is improved by 56.7%, power consumption by 67.3%, and cost by
68.5% compared to the existing CPU SIMD acceleration

* We implemented the first FPGA-based PoC and plan to further improve it
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