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Abstract—The proliferation of heterogeneous chip multiproces-
sors in recent years has reached unprecedented levels. Traditional
homogeneous platforms have shown fundamental limitations
when it comes to enabling high-performance yet-ultra-low-power
computing, in particular in application domains with real-time
execution deadlines or criticality constraints. By combining the
right set of general purpose cores and hardware accelerators
together, along with proper chip interconnects and memory
technology, heterogeneous chip multiprocessors have become an
effective high-performance and low-power computing alternative.

One of the challenges of heterogeneous architectures relates
to efficient scheduling of application tasks (processes, threads)
across the variety of options in the chip. As a result, it is
key to provide tools to enable early-stage prototyping and
evaluation of new scheduling policies for heterogeneous plat-
forms. In this paper, we present STOMP (Scheduling Techniques
Optimization in heterogeneous Multi-Processors), a simulator for
fast implementation and evaluation of task scheduling policies in
multi-core/multi-processor systems with a convenient interface
for “plugging” in new scheduling policies in a simple manner.
STOMP is part of our DARPA-funded EPOCHS project.
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I. INTRODUCTION

Domain-specific heterogeneous systems on a chip (SoC)
expose a variety of options for task execution, including
but not limited to general-purpose cores, graphics processing
units (GPUs), and hardware accelerators. Due to this degree
of heterogeneity, task scheduling becomes less trivial when
compared to homogeneous counterparts. In its simplest form,
the scheduler can statically map application tasks to fixed
execution units in the chip to reduce the complexity associated
with run-time scheduling decisions. This approach, however,
can limit the scheduler’s capabilities in making dynamic
decisions that can lead to better performance or efficiency.
Therefore, it becomes critical to provide the right set of
tools for early-stage prototyping and evaluation of scheduling
algorithms (“policies”) in heterogeneous systems, enabling
enough flexibility and exploration space coverage.

The Domain-Specific SoC (or DSSoC) program [1] under
DARPA MTO’s Electronics Resurgence Initiative (ERI) is

This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA). The views, opinions and/or findings
expressed are those of the authors and should not be interpreted as representing
the official views or policies of the Department of Defense or the U.S.
Government. This document is approved for public release: distribution
unlimited.

concerned with the problem of designing easily programmable,
yet efficient SoCs (for an identified application domain) at
low development cost. In particular, effective task schedul-
ing in heterogeneous SoCs is one of the key challenges
within this program. The IBM-led project under DSSoC is
called: “EPOCHS: Efficient Programmability of Cognitive
Heterogeneous Systems.” In this context, we created STOMP
(Scheduling Techniques Optimization in heterogeneous Multi-
Processors), a queue-based discrete-event simulator that en-
ables fast implementation and evaluation of task scheduling
policies in heterogeneous systems [23]. It implements a con-
venient interface to allow users and researchers to “plug in”
new scheduling policies in a simple manner and without the
need to interact with STOMP’s internal code. We conceive
STOMP with the following three goals in mind:

o Flexibility: it is straightforward to define simulated plat-
forms and applications, and to test new scheduling policies
through STOMP’s “plug & play” approach.

e Ease of use: STOMP’s default execution mode allows users
to quickly configure and run simulations at the right level
of abstraction. It also supports more detailed simulation
capabilities for expert users as well.

e Openness: the tool is open source and publicly avail-
able [23].

STOMP’s core queue-based operation approach builds upon
the QUTE framework [17]. However, STOMP introduces radi-
cally new elements to support the evaluation of heterogeneous
SoCs, allowing users to easily configure multi-core/multi-
processor systems with varying degrees of heterogeneity. In
one of its execution modes, STOMP can be fed with appli-
cations represented as directed acyclic graphs (DAGs), which
can be either generated in a synthetic manner or from the
characterization of real workloads.

STOMP is thoroughly validated against analytical model
counterparts (closed-form expressions). For system utiliza-
tion levels between 10%-90%, the average relative errors for
steady-state analysis of waiting times are: 0.50%, 0.83%, and
1.45% (for one, two and three servers, respectively).

The rest of the paper presents STOMP along with evaluation
results using autonomous vehicles applications. It also dis-
cusses the ongoing implementation of these advanced schedul-
ing policies in real heterogeneous systems.



II. STOMP SIMULATOR

Figure 1 presents a simplified view of STOMP with the most
relevant components to support multi-step task scheduling.
Specifically, task scheduling in STOMP involves two steps:
application pre-processing and task scheduling, implemented
within the Met a—-Sched and Task—-Sched modules, respec-
tively.
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Fig. 1. STOMP overview showing Meta-Sched and Task-Sched.

Meta-Sched continuously analyzes the simulated appli-
cations, which are expressed in the form of directed acyclic
graphs (DAGs), where nodes represent tasks and edges rep-
resent dependencies. A DAG has an associated execution
deadline and a criticality level. Meta—Sched uses the DAG’s
execution deadline to compute tasks’ execution deadlines.
Similarly, tasks are assigned the criticality level of the DAG
they belong to. Meta—Sched also computes a rank associated
to each task, keeps tasks ordered by rank in the Ready Queue,
and identifies ready (runnable) tasks by tracking dependencies.
The rank of task i, a concept adopted also in prior works (
[22], [26], [27]), can be computed in different ways; e.g. as a
function of task ¢’s criticality and deadline:

Criticality;
Deadline;

If task ¢’s criticality is high and/or its deadline is short, then
the task will be assigned a relatively large rank and, therefore,
will be placed closer to the head of the Ready Queue for
immediate execution.

Task—Sched takes tasks from the Ready Queue and
assigns them to servers (processing elements) based on
the user-specified scheduling policy. Task—-Sched notifies
Meta-Sched about completed tasks through the Completed
Queue. New scheduling policies can be created and “plugged
in” as discussed in Section II-B.
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STOMP supports two execution modes: probabilistic and
realistic. In probabilistic mode, the arrival rate and service
times (execution times) of tasks are determined by config-
urable probability distributions (e.g. exponentially for the
arrival rate). In realistic mode, the tasks and their associated
characteristics (like arrival and service times) are loaded from
a trace file provided by the user and previously generated, for
example, using real profiling data.

Once inserted in the Ready Queue, each task has a set of
attributes, the following being the most relevant ones:

o Target servers: list of servers (processing elements) where

the task can execute on and the order of preference.
For example, the list {accelerator, GPU, CPU core}
indicates that the scheduler should first try to place the
task in a corresponding accelerator. If an accelerator is
not available, then other supported architectures are GPU
and CPU core, in that order of preference. Tasks do not
necessarily support all the available processing elements
— e.g. some tasks may only run on CPU cores, or CPU
cores and GPUs, etc.

o Service time: the list of target servers includes corre-
sponding service (execution) times for each specified
processing element. These are mean service times used
to generate task execution times during simulation. They
are ignored in realistic execution mode (i.e. when tasks
are read from external traces).

o Power consumption: similarly, the list of target servers in-
cludes corresponding power consumption information for
each specified processing element. This information can
be used for implementation of power-aware scheduling
policies.

o Execution deadline: single value associated with the task
that indicates the amount of time available for execution,
and intended for simulation of real-time constrained ap-
plications.

The user can also specify and configure the characteristics
of the servers (processing elements). Obvious options include
CPU cores, GPUs, and hardware accelerators. At present,
STOMP does not support multi-threaded processing elements;
in other words, once a task is allocated to a processing element,
no other task(s) can be scheduled on it until the currently
running task finishes its execution.

A. Configuration Parameters

STOMP simulations are configured through a single JSON

file. Some of the most relevant parameters are described below:

e sched_policy_module: indicates the scheduling

policy to use. For example, policies.test uses a

policy implemented in the test.py file within the

policies folder. The implementation of new schedul-
ing policies is discussed in Section II-B.

e max_tasks_simulated: maximum number of simu-

lated tasks. Only valid with STOMP’s probabilistic mode.

e mean_arrival_time: mean task arrival time. Only
valid with STOMP’s probabilistic mode.

e arrival_time_scale: a constant factor to

scale mean_arrival_time. For example, a 0.5



value will double the task arrival rate (since it
halves mean_arrival_time); while a 2.0 value
will halve the task arrival rate (since it doubles
mean_arrival_time). Only valid with STOMP’s
probabilistic mode.

e servers: definition of servers (processing elements)
simulated in the system. For example, the following
JSON fragment configures a simulated platform with
eight general-purpose cores, two GPUs and one FFT

accelerator:
"servers": {
"cpu_core" : {
"count" : 8
}I
"gpu" |
"count" : 2
}I
"fft_accel" : {
"count"

}

A server’s name is just an arbitrary string and does not
assign any specific characteristics to the server. Instead,
execution times and power consumption values are part
of each task’s information.

o tasks: definition of tasks simulated in the system. Only
valid with STOMP’s probabilistic mode. For example, the
following JSON fragment creates a simulated FFT task
with specific mean service times and associated standard
deviations for the simulated heterogeneous platform:

"tasks": {
"EffE" o {

"mean_service_time" : {
"cpu_core" 500,
"gpu" 100,
"fft_accel" : 10

}I

"stdev_service_time" : {
"cpu_core" 5.0,
"gpu" : 1.0,
"fft_accel" 0.1

}

The standard deviation controls the dispersion of the
service (execution) time — in other words, it allows the
user to set the level of determinism of a task’s execution
characteristics.

e input_trace_file: trace of tasks used for simu-
lation with STOMP’s realistic mode. The trace also
includes the task’s arrival time and service times across
the different server types in the system.

It is important to mention that the concept of ‘“time”
in STOMP is unitless. The user is responsible for providing
meaning to the time values used in the configuration file —

e.g. a mean service time of “500” units of time could mean
500 ps, or 500 ms, etc.

B. “Plug & Play” Scheduling Policies

The Task-Sched module in STOMP (Figure 1) is respon-
sible for assigning ready tasks to servers (processing elements)
using a user-specified scheduling policy. The policies can
go from very simple decision logic all the way to complex
and potentially more “intelligent” ones — eventually using
machine learning techniques or other mechanisms for dynamic
improvement of the scheduling activities. In STOMP, new
policies are constructed by implementing the abstract class
BaseSchedulingPolicy, shown below:

class BaseSchedulingPolicy:
__metaclass__ = ABCMeta

@abstractmethod
def init(self, servers, stomp_stats, stomp_params): pass

@abstractmethod
def assign_task_to_server(self, sim_time, tasks): pass

@abstractmethod
def remove_task_from_server(self, sim_time, server): pass

@abstractmethod
def output_final_stats(self, sim_time): pass

Specifically, the task scheduling decision logic is de-
fined within the assign_task_to_server () method.
The user also has the opportunity to implement initializa-
tion and finalization activities as part of the init () and
remove_task_from_server () methods, and to provide
policy-specific statistics via output_final_stats () to
be displayed at the end of the simulation. One possible
(illustrative) example of an assign_task_to_server ()
implementation is shown below (in this example, the task is
only scheduled to the fastest server type, if available):

def assign_task_to_server(self, sim_time, tasks):

if (len(tasks) == 0):
# There aren’t tasks to serve
return None

# Determine task’s best scheduling option
target_server_type =

tasks[0].mean_service_time_list[0][O0]

# Look for an available server
for server in self.servers:

if (server.type == target_server_type
and not server.busy):

# Assign task in queue’s head to server




server.assign_task(sim_time, tasks.pop(0))
return server

return None

Strictly speaking, scheduling policies are implemented as
Python modules, with each new policy in a different Python
file. The user indicates the module to load (i.e. the policy
to use) through the sched_policy_module parameter, as
we explain in Section II-A. STOMP’s GitHub repository [23]
includes examples of scheduling policies that can be used as
templates to generate new ones.

III. STOMP VALIDATION

Since STOMP is a queue-based simulator, we address its
validation by comparing it against its analytical model coun-
terparts (closed-form expressions). Specifically, we focus on
the M/M/k system, as defined by Kendall’s notation [25]. An
M/M/k system models a single queue with k servers (process-
ing elements), where both arrival and service (computation)
times are exponentially distributed. In practice, service times
in STOMP are normally distributed; however there are only
crude approximations for the M/G/k case which are relatively
accurate only for a few constrained cases [9], [13]. This leads
us to opt for the M/M/k system to validate the dynamics of
the core STOMP simulation engine.

Figure 2 presents the relative error of the average waiting
time (steady state analysis) as a function of the system
utilization, for the 1-, 2- and 3-server cases (M/M/1, M/M/2
and M/M/3, respectively). The relative error is computed as
(Wsromp — Warym/kl/Waijnije. where Wsronrp is the
steady-state waiting time generated by STOMP after simu-
lating 1M tasks and Wy az/ is the corresponding waiting
time generated using the closed-form formula. In most cases,
the relative errors are low. Specifically, for utilization levels
between 10%-90%, the average relative errors are 0.50% for
M/M/1, 0.83% for M/M/2, and 1.45% for M/M/3. The relative
error increases for the 99%-utilization case; it is well known
that these formulas are usually not adequate when utilization
approaches 100% as the system becomes less stable [9].
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Fig. 2. Relative error of the average (steady state) waiting time as a function
of the system utilization.

The accuracy of discrete-event simulators like STOMP is
highly dependent on the number of simulated tasks. Usually,
when the number of simulated tasks (or ‘“‘customers”) is
not “large enough”, the system suffers from instability and
warming-up conditions that can invalidate the average (steady
state) results. Figure 3 presents the relative error of the average
waiting time (steady state analysis) as a function of the number
of simulated tasks, for the three cases under consideration
M/M/1, M/M/2 and M/M/3). The simulations correspond to
50% system utilization. As we can observe, the relative error
decreases when more tasks are simulated. The “right” amount
of tasks also depends on the case: 200K tasks is enough to
ensure an error smaller than 1% in the M/M/1 case; while
at least 400K and 300K tasks are needed in the M/M/2 and
M/M/3 cases, respectively, to ensure the same error bound.
In the validation campaign conducted in this work (Figure 2),
we simulated 1M tasks in all cases to conservatively avoid any
possible transient state instabilities during the simulations.
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Fig. 3. Relative error of the average (steady state) waiting time as a function
of the number of simulated tasks (for the 50% system utilization case).

We are currently working on extending this validation
analysis to cases where tasks and servers (processing elements)
can be of different types (heterogeneous systems). Due to
the lack of closed-form formulas for heterogeneous queueing
systems, the validation strategy for these cases will require
alternative approaches which may imply the use of third-party
(already-validated) discrete-event simulators for the heteroge-
neous cases.

IV. EVALUATION FOR REAL-WORLD AUTOMOTIVE
APPLICATIONS

This section evaluates STOMP using real-world application
traces derived from ADSuite [16], an end-to-end autonomous
driving (AV) application comprised of kernels like object
detection (DET), object tracking (TRA), localization (LOC),
mission planning, and motion planning. For DET, we use
YOLOvV3 [19], a DNN-based detection algorithm, on a series
of 7 images derived from the VOC dataset [11]. We use
the Tiny-YOLOV3 pre-trained set of weights, which is much
faster and lightweight, but less accurate compared to the
regular YOLO model. For TRA, we use GOTURN [14],
a DNN-based single object tracking algorithm, on a series



of 14 videos in the ALOV++ dataset [21]. For LOC, we
use ORB-SLAM [18], a highly-ranked vehicle localization
algorithm, on 3 sequences from the KITTI datasets [12].
Further, for our GPU evaluation, we adopt the ORB-SLAM
implementation in [3], where the hot paths are rewritten using
CUDA. We also obtain timing profile of DET, TRA and
LOC on their respective accelerators from [16]. For motion
and mission planning, we use the op_local_planner and
op_global_planner [10] kernels in Autoware [15]. The
fusion kernel combines the coordinates of the objects being
tracked with the AV location. It has a small latency, for which
we only consider CPU execution.

To evaluate ADSuite, we first profile (offline) its constituent
kernels on an NVIDIA Jetson TX1 board, which is represen-
tative of an SoC used in real-world AV systems. This informa-
tion is then used to simulate a heterogeneous SoC with multi-
ple PEs. We assume that the simulated SoC has variants of the
ARM Cortex-A57 CPU and the NVIDIA Maxwell GPUs with
256 CUDA cores, and fixed-function accelerators for certain
tasks. We consider a unified memory (shared physical address
space) between the PEs in the simulated SoC, since we profiled
the applications on the TX1 that has unified memory between
the CPUs and GPUs; STOMP, however, is not limited to this
specific choice. Table I summarizes the modeled SoC architec-
ture along with other relevant simulation parameters. For the
sake of this illustrative evaluation, we prototyped in STOMP
a mission-aware scheduling algorithm called AVSched that
leverages the synergy between the underlying heterogeneous
hardware platform and the applications’ runtime characteristics
to satisfy the growing throughput demand of AVs, while
meeting the specified real-time and safety constraints. We
choose the following metrics to evaluate AVSched: mission
time to complete the objective of the mission (e.g. navigation
time from location “A” to location “B”, while complying with
safety requirements of meeting deadline for all critical DAGs);
and fraction (or %) of mission completed at a given speed
before missing the first critical DAG deadline.

TABLE 1
SIMULATED CONFIGURATIONS.
[ Parameter [ Values |
Simulation Mode Realistic

8 single-core ARM Cortex-AS57 CPUs
2 NVIDIA Maxwell GPUs
1 tracking accelerator [16]
1 localization accelerator [16]
1 detection accelerator [16]
AVSched
Mission time; % of mission completed

Simulated SoC

Policies
Metrics

Figure 4 shows that AVSched achieves up to 8.5%, 5.6x,
5.4x and 5.5x improvement in mission time over CPATH,
RHEFT, 2step-EDF and ADS, respectively (state-of-the-art
real-time and heterogeneous schedulers). In terms of the %
mission completed metric, ADS completes 9%, 11% and 18%
of the mission at the maximum safe speed of AVSched for
the rural, semi-urban and urban scenarios, respectively, before
missing the deadline for the first critical DAG. Furthermore,

AVSched is able to achieve 1.7-3.7 x better PE utilization over
the baseline schedulers.
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Fig. 4. Comparison of metrics and PE utilization of AVSched against prior-
work schedulers for ADSuite. Left: Mission speedup and PE utilization
improvement of AVSched over the baseline schedulers. Right: % Mission
completed by baseline schedulers before missing deadline for a critical DAG,
while operating at the maximum safe speed achieved by AVSched.

V. IMPLEMENTATION ON REAL SETTINGS

STOMP allows early-stage prototyping and evaluation of
scheduling policies that can be then ported to real hetero-
geneous chips. As part of this effort, the EPOCHS team
is pursuing the Scheduler Library (SL) initiative [24] which
provides a user-level application programming interface (API)
that allows applications to access the hardware accelerator re-
sources of the system. We use different AV applications as our
primary workloads, including our Mini-ERA application [4].
These applications are linked to the SL to provide a scheduler-
managed access to the underlying hardware accelerators in our
EPOCHS SoC. The SL has three main components (or layers),
as indicated in Figure 5:

o SL API: abstracts applications from the scheduler’s details
and provides some degree of portability across applications
and execution models.

o SL Manager: schedules tasks across heterogeneous PEs
to improve metrics of interest (throughput, criticality, ef-
ficiency) executing the user-defined scheduling policy. An
internal repository stores different binary versions of appli-
cation kernels targeting different PE types.

o Hardware APIs: abstract the scheduler from the hetero-
geneous hardware through a “plug & play” approach that
allows multiple hardware interfaces to coexist — e.g. CPU,
GPU, and ESP [2].

The SL is an ongoing project that constitutes a step towards
a longer-range vision, that of advanced hardware/software
interfaces to enable the revolution promised by hardware
specialization.

VI. RELATED WORK

A plethora of work exists on various scheduling policies for
heterogeneous architectures. However, most of these schedul-
ing policies are either evaluated on in-house simulators or
runtime systems. To the best of our knowledge, STOMP is
the first open-source tool for agile evaluation of scheduling
algorithms in heterogeneous system that was conceived with
“plug & play” flexibility in mind.

Runtime systems like StarPU [6] and Nanos++ [7], [8]
provide scheduler frameworks. However it can be extremely
tedious to develop and compare scheduling policies in a



Fig. 5. Scheduler Library (SL) overview.

runtime system that has been developed to perform various
kernel operations. Moreover the data structures and models of
the runtime system can constrict the generality of a scheduling
policy being developed [6].

TaskSim [20] is a simulator for the execution of tasks on
decoupled accelerator systems with the capability of schedul-
ing tasks. DS3 is a simulator for heterogeneous SoCs with
scheduling and power management features [5]. Both TaskSim
and DS3 are full-system simulators and, consequently, agile
evaluation and comparison of multiple scheduling algorithms
is not necessarily a straightforward process.

VII. CONCLUSION

This paper presents STOMP, a simulator for fast evaluation
of scheduling policies in domain-specific SoCs (developed
under the DARPA-funded DSSoC program). Using real-world
AV applications, we show results of a proposed ‘“‘smart”
scheduling policy (AVSched) that improves critical metrics,
like mission time for AVs. We also discuss the ongoing
implementation of advanced scheduling policies in real hetero-
geneous systems through the Scheduler Library (SL) initiative
within our EPOCHS project.
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