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Samsung AI at CES 2021

https://youtu.be/vd6W3oGh1I8


Robots

JetBot 90 AI+ Bot Care & Bot Handy



TVs

Neo Quantum Processor Smart Trainer



Home Appliances

SmartThings Cooking Family Hub



Mobile Phones

Single Take Camera Bixby Vision



Our AI Vision



Why On-device AI ?



Two ways to implement AI : Cloud vs. On-device

On-device AI can enhance cloud AI in user experience

Centralized AI On-device AI

Privacy Protection

Reliable AI

Context-aware

Fast Response



Enhancing User Experience : Privacy

Important Information about users can be processed on device

“Read the
most recent

message”

Device

Voice Assistant

HW Sensor

Microphone (Voice)

No need to

send the voice to cloud

send ‘most recent message’ to cloud

send private information to cloud



Enhancing User Experience : Reliable AI

No matter what happens on network connection or servers, it works!

In elevator In flight Server error

404
Page not found



Enhancing User Experience : Context-aware

Device knows you fairly well        AI can suggest the best option

1 2 4

Launch Select Select Start to Record
- Camera - More - Super Slow Motion

Recommendation

You can use this with
“Record a Super slow
motion video”

3



Enhancing User Experience : Fast response

Without latency in network and servers, it executes considerably quickly

No Network Latency

No Server Latency



On-device AI Research



On-device AI Challenges

On-device AI is required to run on limited resources, compared to cloud

Resource GapClouds Devices

Computing

Memory

Power



Our On-Device AI Approach

① Neural Network Model Optimization 

② AI System Software

③ AI HW Accelerator

NN Compiler/Runtime
Model Analysis, Scheduling, 
Memory Optimization, …

NN Pipeline
Multi-Model Pipeline, 
Multi-Device Pipeline

Neural Processor
Power Efficient Specialized Accelerator HW IP

AI
+

SW
+

HW

Co-
Design

Model Compression
Pruning, Quantization, …

Model Architecture

NAS, Multi-taking, …

NN Training
On-Device Training

FleXOR
BiQGEMM

nnStreamer
nnTrainer

SNP



FleXOR

FleXOR: Trainable Fractional Quantization

D. Lee, S Kwon, B. Kim, Y Jeon, B Park, J Yun
Neurips 2020



FleXOR

• A flexible encryption algorithm/architecture (called “FleXOR”) 

to enable fractional sub 1-bit numbers to represent each weight

• Contributions

– XOR-based encryption of quantized bits enhances compression ratio

– XOR-aware training algorithm learns encrypted weights

– High model accuracy with sub 1-bit quantization



Differentiable XOR-gate Network

𝑤𝑖
𝑏

𝑏𝑖

𝛼

𝑤𝑖 sign

Existing STE (straight-through estimator)

𝑤𝑖
𝑏
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𝛼

Our FleXOR
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𝑒

𝑤𝑙
𝑒

sign

sign

𝜕tanh

𝜕tanh

1 ≤ 𝑘, 𝑙 ≤ 𝑁𝑖𝑛 1 ≤ 𝑖 ≤ 𝑁𝑜𝑢𝑡

FleXOR should be able to select the best 
out of 2^Nin possible outputs that are 
randomly selected from larger 2^Nout

search space.

𝑦 = 𝑡𝑎𝑛ℎ 𝑥1 × −𝑡𝑎𝑛ℎ(𝑥2) 𝑦 = 𝑡𝑎𝑛ℎ 𝟏𝟎𝑥1 × −𝑡𝑎𝑛ℎ(𝟏𝟎𝑥2)



Experiments

- FleXOR allows reduced memory 
footprint and bandwidth which are 
critical for energy-efficient inference 
designs.

- Even though achieving the best 
accuracy for 1.0 bit/weight is not the 
main purpose
(e.g., XOR gate may be redundant for 
Nin=Nout), FleXOR shows the minimum 
accuracy drop.



BiQGEMM: Matrix Multiplication with Lookup Table for 
Binary-Coding-based Quantized DNNs

Y. Jeon, B. Park, S. Kwon, B. Kim, J. Yun, D. Lee
SC20

BiQGEMM



• Previous Binary-Code Quantization Implementation

• Special H/W for MATMUL operation with Quantized weights

- For non-uniform quantization, CPU/GPU/NPU needs to perform on-chip dequantization in practice.

- Binary-code is then only to reduce memory requirements (not latency) without special H/W

• BiQGEMM

• Dedicated binary-coding-based matrix multiplication unit kernel design using lookup tables

• CPUs and GPUs can utilize quantized matrices to improve performance
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• For MatMul, computations in            are redundant

• Computations using 𝑿 and B values are performed in advance 

and stored in lookup tables
0.03 and -0.17 are 
repeatedly accessed

BiQGEMM



0.03  0.16 -0.07
-0.17  0.21 -0.10
0.20 -0.09  0.01

-0.17  0.21 -0.10

1  0  0  1

0  1  1  0

1  0  0  1

...

0  1  1  0

1  0  0  1

0  1  1  0

.

0.15

0.30

0.10

...

0.22

0.35

0.08

𝑩𝟎 = {𝟎, 𝟏}𝟑𝟔×𝟒𝑨𝟎
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• MatMul computations are replaced with pre-computation and Lookup table access

• Lookup-table size is empirically determined. 

• In practice, 8 bits are used as an index with 256 entries

• No redundant computations

• Number of float multiplications are greatly reduced

• B matrix is now access in ‘Byte’ level (No bit-level operation)

Lookup Table

0 0 -(0.03) -(-0.17)

0 1 -(0.03) +(-0.17)

1 0 +(0.03) -(-0.17)

1 1 +(0.03) +(-0.17)Retrieved from a Lookup Table

BiQGEMM

** -1 in 𝑩𝟎 is stored as 0 in memory



Experimental Results

• Speedup over Eigen using 1-thread. Matrix size is given as m-by-1K. 
Output size (m) and batch size are annotated along the horizontal axis.

(a) PC (i7-7700)

(b) Mobile (Coretex-A76)



nnStreamer

Linux Foundation AI Project for Efficient Machine 
Learning Pipeline Development and Execution

M. Ham, J. Moon, G. Lim, S. Woo, W. Song, J. Jung,
H. Ahn, P. Kapoor, D. Chae, G. Jang, Y. Ahn, J. Lee

https://nnstreamer.ai/
https://github.com/nnstreamer/nnstreamer



Neural Network Pipeline

Efficient and flexible pipelines for Neural Networks

1000s Lines of Code

Manual Parallelization

Direct media/hardware Optimization 

10s Lines of Pipeline Description

Automatic Pipeline Parallelization

Reusable Module for media/hardware

Queue Depth Post-Process

Queue Segmentation

Mux Synthesis App Pre-process

Ex) AR Application Post-Process



Do Not Reinvent the Wheel

GStreamer
– https://gstreamer.freedesktop.org

– Open source multimedia pipeline framework

– Library for constructing graphs of media-handling components

nnStreamer
– But, perfect the wheel!

– Extension of GStreamer for AI processing

 Neural network as another media filter

 Neural network data as tensor stream

28/23



Neural Network to GStreamer Pipeline 

Code: src ! sink
sr

c

si
n
k

Code: src ! tensor_filter mode=tensorflow-lite model=abc.tflite ! sink

sr
c

si
n
kTensorflow-lite

abc.tflite

Code: src ! tensor_filter mode=tensorflow model=def.pb ! sink

sr
c

si
n
kTensorflow

def.pb

Code: src ! tensor_filter mode=caffe2 model=ghi.pb ! sink

sr
c

si
n
kCaffe2

ghi.pb



Data Conversion

Code: src ! tensor_filter mode=tensorflow-lite model=abc.tflite ! sink
sr

c

si
n
kTensorflow-lite

abc.tflite

1920x1080 h264 3x300x300, float32

Code: src ! decodebin ! videoconvert ! videoscale
! video/x-raw,format=RGB,width=300,height=300
! tensor_convert
! tensor_transform mode=typechg option=float32
! tensor_filter mode=tensorflow-lite model=abc.tflite ! sink

sr
c

si
n
kTensorflow-lite

abc.tflite

1920x1080 h264

3x300x300, float32
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1920x1080 yuv raw
vi

d
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o
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n
ve

rt

1920x1080 RGB

vi
d
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o
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a
le

300x300 RGB
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p
sf

ilt
e
r

Ensure 
300x300 RGB

te
n
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r_
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r
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n
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r_
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a
n
sf

o
rm

3x300x300 uint8

3x300x300 float32



Example: Activity Recognition Sensors

• ~1000 lines  16 lines

• @ 30FPS input, 90.4%  51.4% CPU

• ~40 MiB  ~17 MiB Memory (RSS)

Neural 
Net



nnTrainer

nnTrainer: Towards On-Device Learning for 
Personalization

Submitted to ATC 21
https://github.com/nnstreamer/nntrainer



Light-Weight On-Device Training Framework

nnTrainer
– Software framework to train neural network on embedded devices

Personalization
– As users keep using AI applications, they get 

 Faster (ex. 100ms to 50ms)

 More accurate (ex. 88% to 95%)

 Personalized (ex. A Dog to My Dog)

– While providing privacy

 Personal data stay at user devices

Challenges
 Small data for training

 Limited compute/memory resources



nnTrainer Overview

Peak Memory Consumption 
 PyTorch : 1.2 GiB
 TensorFlow : 1.02 GiB
 NNTrainer : 0.37 GiB

 Optimization of memory usage and training time

 Transfer learning & Meta-learning

 TFLite / Pytorch model-lelve compatibility

 Easy to implement custom operators

 Supports Android, Tizen, Linux

nnTrainer System Architecture



Few-Shot Learning: SimpleShot

SimpleShot Implementation SimpleShot Inference Results



Example: HandMoji



SNP

Streaming Line Processing Architecture with a Winograd
Convolution Array for 4K 60fps Super-Resolution 

Applications

Work-in-Progress



Stream Processing for TVs

Non-Streaming Environment Streaming Environment



Super-Resolution Neural Network Scaling



Accelerator Architecture

Architecture Overview Area Breakdown



Implementation & Evaluation

FPGA Demonstration Comparisons of CNN Hardware Accelerators



AI-SW-HW Co-Design



Efficient Neural Network: Voice

13x smaller neural network can show the similar performance in 
Speech Recognition

91.6% Accuracy @ 530 MB  91.1 % Accuracy @ 38MB

[Reference] Attention based on-device streaming speech recognition with large speech corpus (Interspeech 2019) 



Acceleration of Neural Network: Specialized H/W

Voice Recognition NPU: about 4x less power consumption than CPU

ASR Accelerator 
Architecture

CPU
ASR Acceleration

(NPU-based)

Power
Consumption 982mW 276mW

Performance Comparison

* Measured under xRT(real-time factor) <1 



On-device AI Deployment



Real FLOPS matter!

Big challenge: How to exploit the “peak” FLOPS into “real” FLOPS ???
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0.2% Utilization
Results from a commercial NPU IP
• Conv : 116.5 MACs/clk (30% Utul.)
• Deconv: 1.05 MACs/clk (0.2 % Util.) 

Exynos 2100 : 26 TOPS (Peak)
Snapdragon 888 : 26 TOPS (Peak)



On-device AI will be embedded in various devices

Visual Display Digital Appliances
Mobile

Communications

Big challenge: How to provide the “same” AI experience on variety of devices ???



Thank you


