
On-Device AI
for Mobile and Consumer Devices:
From DNN Model Compression to
Domain-Specific Accelerators

Daehyun Kim

Samsung AI at CES 2021

https://youtu.be/vd6W3oGh1I8

Robots

JetBot 90 AI+ Bot Care & Bot Handy

TVs

Neo Quantum Processor Smart Trainer

Home Appliances

SmartThings Cooking Family Hub

Mobile Phones

Single Take Camera Bixby Vision

Our AI Vision

Why On-device AI ?

Two ways to implement AI : Cloud vs. On-device

On-device AI can enhance cloud AI in user experience

Centralized AI On-device AI

Privacy Protection

Reliable AI

Context-aware

Fast Response

Enhancing User Experience : Privacy

Important Information about users can be processed on device

“Read the
most recent

message”

Device

Voice Assistant

HW Sensor

Microphone (Voice)

No need to

send the voice to cloud

send ‘most recent message’ to cloud

send private information to cloud

Enhancing User Experience : Reliable AI

No matter what happens on network connection or servers, it works!

In elevator In flight Server error

404
Page not found

Enhancing User Experience : Context-aware

Device knows you fairly well AI can suggest the best option

1 2 4

Launch Select Select Start to Record
- Camera - More - Super Slow Motion

Recommendation

You can use this with
“Record a Super slow
motion video”

3

Enhancing User Experience : Fast response

Without latency in network and servers, it executes considerably quickly

No Network Latency

No Server Latency

On-device AI Research

On-device AI Challenges

On-device AI is required to run on limited resources, compared to cloud

Resource GapClouds Devices

Computing

Memory

Power

Our On-Device AI Approach

① Neural Network Model Optimization

② AI System Software

③ AI HW Accelerator

NN Compiler/Runtime
Model Analysis, Scheduling,
Memory Optimization, …

NN Pipeline
Multi-Model Pipeline,
Multi-Device Pipeline

Neural Processor
Power Efficient Specialized Accelerator HW IP

AI
+

SW
+

HW

Co-
Design

Model Compression
Pruning, Quantization, …

Model Architecture

NAS, Multi-taking, …

NN Training
On-Device Training

FleXOR
BiQGEMM

nnStreamer
nnTrainer

SNP

FleXOR

FleXOR: Trainable Fractional Quantization

D. Lee, S Kwon, B. Kim, Y Jeon, B Park, J Yun
Neurips 2020

FleXOR

• A flexible encryption algorithm/architecture (called “FleXOR”)

to enable fractional sub 1-bit numbers to represent each weight

• Contributions

– XOR-based encryption of quantized bits enhances compression ratio

– XOR-aware training algorithm learns encrypted weights

– High model accuracy with sub 1-bit quantization

Differentiable XOR-gate Network

𝑤𝑖
𝑏

𝑏𝑖

𝛼

𝑤𝑖 sign

Existing STE (straight-through estimator)

𝑤𝑖
𝑏

𝑏𝑖

𝛼

Our FleXOR

𝑤𝑘
𝑒

𝑤𝑙
𝑒

sign

sign

𝜕tanh

𝜕tanh

1 ≤ 𝑘, 𝑙 ≤ 𝑁𝑖𝑛 1 ≤ 𝑖 ≤ 𝑁𝑜𝑢𝑡

FleXOR should be able to select the best
out of 2^Nin possible outputs that are
randomly selected from larger 2^Nout

search space.

𝑦 = 𝑡𝑎𝑛ℎ 𝑥1 × −𝑡𝑎𝑛ℎ(𝑥2) 𝑦 = 𝑡𝑎𝑛ℎ 𝟏𝟎𝑥1 × −𝑡𝑎𝑛ℎ(𝟏𝟎𝑥2)

Experiments

- FleXOR allows reduced memory
footprint and bandwidth which are
critical for energy-efficient inference
designs.

- Even though achieving the best
accuracy for 1.0 bit/weight is not the
main purpose
(e.g., XOR gate may be redundant for
Nin=Nout), FleXOR shows the minimum
accuracy drop.

BiQGEMM: Matrix Multiplication with Lookup Table for
Binary-Coding-based Quantized DNNs

Y. Jeon, B. Park, S. Kwon, B. Kim, J. Yun, D. Lee
SC20

BiQGEMM

• Previous Binary-Code Quantization Implementation

• Special H/W for MATMUL operation with Quantized weights

- For non-uniform quantization, CPU/GPU/NPU needs to perform on-chip dequantization in practice.

- Binary-code is then only to reduce memory requirements (not latency) without special H/W

• BiQGEMM

• Dedicated binary-coding-based matrix multiplication unit kernel design using lookup tables

• CPUs and GPUs can utilize quantized matrices to improve performance

+1 -1 +1 -1

-1 -1 -1 +1

-1 -1 +1 -1

+1 +1 +1 -1

𝑎00
𝑎01
𝑎02
𝑎03

+1 -1 +1 -1

-1 -1 -1 +1

-1 -1 +1 -1

+1 +1 +1 -1

𝑎00
𝑎01
𝑎02
𝑎03

CPU

Binary weights are

transferred in ‘Byte’ level

CPU needs to access

binary data in ‘Bit’ level

+1 -1 +1 -1

-1 -1 -1 +1

-1 -1 +1 -1

+1 +1 +1 -1

𝑎00
𝑎01
𝑎02
𝑎03

Storage (HDD, SSD …)

1010 0001 0010 1110 …

1 byte

SDRAM

BiQGEMM

}𝑊 𝐵0 𝐵1 𝐵2

𝑎00
…
𝑎0𝑛

𝑎10
…
𝑎1𝑛

𝑎20
…
𝑎2𝑛

≈ + +𝑋 𝑋.{

0.03 0.16 -0.07
-0.17 0.21 -0.10
0.20 -0.09 0.01

-0.17 0.21 -0.10

+1 -1 -1 +1

-1 +1 +1 -1

+1 -1 -1 +1

...

-1 +1 +1 -1

+1 -1 -1 +1

-1 +1 +1 -1

.

0.15

0.30

0.10

...

0.22

0.35

0.08

𝑩𝟎 = {−𝟏,+𝟏}𝟑𝟔×𝟒𝑨𝟎

𝑿 = ℝ𝟒×𝟑

• For MatMul, computations in are redundant

• Computations using 𝑿 and B values are performed in advance

and stored in lookup tables
0.03 and -0.17 are
repeatedly accessed

BiQGEMM

0.03 0.16 -0.07
-0.17 0.21 -0.10
0.20 -0.09 0.01

-0.17 0.21 -0.10

1 0 0 1

0 1 1 0

1 0 0 1

...

0 1 1 0

1 0 0 1

0 1 1 0

.

0.15

0.30

0.10

...

0.22

0.35

0.08

𝑩𝟎 = {𝟎, 𝟏}𝟑𝟔×𝟒𝑨𝟎

𝑿 = ℝ𝟒×𝟑

• MatMul computations are replaced with pre-computation and Lookup table access

• Lookup-table size is empirically determined.

• In practice, 8 bits are used as an index with 256 entries

• No redundant computations

• Number of float multiplications are greatly reduced

• B matrix is now access in ‘Byte’ level (No bit-level operation)

Lookup Table

0 0 -(0.03) -(-0.17)

0 1 -(0.03) +(-0.17)

1 0 +(0.03) -(-0.17)

1 1 +(0.03) +(-0.17)Retrieved from a Lookup Table

BiQGEMM

** -1 in 𝑩𝟎 is stored as 0 in memory

Experimental Results

• Speedup over Eigen using 1-thread. Matrix size is given as m-by-1K.
Output size (m) and batch size are annotated along the horizontal axis.

(a) PC (i7-7700)

(b) Mobile (Coretex-A76)

nnStreamer

Linux Foundation AI Project for Efficient Machine
Learning Pipeline Development and Execution

M. Ham, J. Moon, G. Lim, S. Woo, W. Song, J. Jung,
H. Ahn, P. Kapoor, D. Chae, G. Jang, Y. Ahn, J. Lee

https://nnstreamer.ai/
https://github.com/nnstreamer/nnstreamer

Neural Network Pipeline

Efficient and flexible pipelines for Neural Networks

1000s Lines of Code

Manual Parallelization

Direct media/hardware Optimization

10s Lines of Pipeline Description

Automatic Pipeline Parallelization

Reusable Module for media/hardware

Queue Depth Post-Process

Queue Segmentation

Mux Synthesis App Pre-process

Ex) AR Application Post-Process

Do Not Reinvent the Wheel

GStreamer
– https://gstreamer.freedesktop.org

– Open source multimedia pipeline framework

– Library for constructing graphs of media-handling components

nnStreamer
– But, perfect the wheel!

– Extension of GStreamer for AI processing

 Neural network as another media filter

 Neural network data as tensor stream

28/23

Neural Network to GStreamer Pipeline

Code: src ! sink
sr

c

si
n
k

Code: src ! tensor_filter mode=tensorflow-lite model=abc.tflite ! sink

sr
c

si
n
kTensorflow-lite

abc.tflite

Code: src ! tensor_filter mode=tensorflow model=def.pb ! sink

sr
c

si
n
kTensorflow

def.pb

Code: src ! tensor_filter mode=caffe2 model=ghi.pb ! sink

sr
c

si
n
kCaffe2

ghi.pb

Data Conversion

Code: src ! tensor_filter mode=tensorflow-lite model=abc.tflite ! sink
sr

c

si
n
kTensorflow-lite

abc.tflite

1920x1080 h264 3x300x300, float32

Code: src ! decodebin ! videoconvert ! videoscale
! video/x-raw,format=RGB,width=300,height=300
! tensor_convert
! tensor_transform mode=typechg option=float32
! tensor_filter mode=tensorflow-lite model=abc.tflite ! sink

sr
c

si
n
kTensorflow-lite

abc.tflite

1920x1080 h264

3x300x300, float32

d
e
co

d
e
b
in

1920x1080 yuv raw
vi

d
e
o
co

n
ve

rt

1920x1080 RGB

vi
d
e
o
sc

a
le

300x300 RGB

ca
p
sf

ilt
e
r

Ensure
300x300 RGB

te
n
so

r_
co

n
ve

rt
e
r

te
n
so

r_
tr
a
n
sf

o
rm

3x300x300 uint8

3x300x300 float32

Example: Activity Recognition Sensors

• ~1000 lines  16 lines

• @ 30FPS input, 90.4%  51.4% CPU

• ~40 MiB  ~17 MiB Memory (RSS)

Neural
Net

nnTrainer

nnTrainer: Towards On-Device Learning for
Personalization

Submitted to ATC 21
https://github.com/nnstreamer/nntrainer

Light-Weight On-Device Training Framework

nnTrainer
– Software framework to train neural network on embedded devices

Personalization
– As users keep using AI applications, they get

 Faster (ex. 100ms to 50ms)

 More accurate (ex. 88% to 95%)

 Personalized (ex. A Dog to My Dog)

– While providing privacy

 Personal data stay at user devices

Challenges
 Small data for training

 Limited compute/memory resources

nnTrainer Overview

Peak Memory Consumption
 PyTorch : 1.2 GiB
 TensorFlow : 1.02 GiB
 NNTrainer : 0.37 GiB

 Optimization of memory usage and training time

 Transfer learning & Meta-learning

 TFLite / Pytorch model-lelve compatibility

 Easy to implement custom operators

 Supports Android, Tizen, Linux

nnTrainer System Architecture

Few-Shot Learning: SimpleShot

SimpleShot Implementation SimpleShot Inference Results

Example: HandMoji

SNP

Streaming Line Processing Architecture with a Winograd
Convolution Array for 4K 60fps Super-Resolution

Applications

Work-in-Progress

Stream Processing for TVs

Non-Streaming Environment Streaming Environment

Super-Resolution Neural Network Scaling

Accelerator Architecture

Architecture Overview Area Breakdown

Implementation & Evaluation

FPGA Demonstration Comparisons of CNN Hardware Accelerators

AI-SW-HW Co-Design

Efficient Neural Network: Voice

13x smaller neural network can show the similar performance in
Speech Recognition

91.6% Accuracy @ 530 MB  91.1 % Accuracy @ 38MB

[Reference] Attention based on-device streaming speech recognition with large speech corpus (Interspeech 2019)

Acceleration of Neural Network: Specialized H/W

Voice Recognition NPU: about 4x less power consumption than CPU

ASR Accelerator
Architecture

CPU
ASR Acceleration

(NPU-based)

Power
Consumption 982mW 276mW

Performance Comparison

* Measured under xRT(real-time factor) <1

On-device AI Deployment

Real FLOPS matter!

Big challenge: How to exploit the “peak” FLOPS into “real” FLOPS ???

0

5

10

15

20

25

30

CONV DECONV

U
ti
li
za

ti
o
n
 (

%
)

0.2% Utilization
Results from a commercial NPU IP
• Conv : 116.5 MACs/clk (30% Utul.)
• Deconv: 1.05 MACs/clk (0.2 % Util.)

Exynos 2100 : 26 TOPS (Peak)
Snapdragon 888 : 26 TOPS (Peak)

On-device AI will be embedded in various devices

Visual Display Digital Appliances
Mobile

Communications

Big challenge: How to provide the “same” AI experience on variety of devices ???

Thank you

