
The eTIE Language Extension

He XIAO

Feb. 28th 2021

Agile for Domain-Specific Accelerator Design

© 2021 Cadence Design Systems, Inc. All rights reserved.2

Tensilica DSP and TIE Overview

© 2021 Cadence Design Systems, Inc. All rights reserved.3

Tensilica Xtensa DSP Architecture
From a RISC to a VLIW, Vector Machine

• Cadence Xtensa Processor is configurable
and extensible processor:

o Add performance, flexibility and longevity

o Automatic hardware and software generation

– C compiler, ISS, debugger

– Optimized RTL and verification framework

• Using a simple Verilog-like language (TIE) you
can define…

o Input/output queues and ports

o Local scratchpad memories

o Fast lookup tables

o Simple single-cycle instructions

o Complex multi-cycle instructions

o SIMD instructions for vectorization

o VLIW-like operations for exploiting instruction
level parallelism

© 2021 Cadence Design Systems, Inc. All rights reserved.4

• TIE is a technology to extend functionality of Xtensa Processors via best-in-
class automation

• TIE stands for Tensilica Instruction Extension

• Includes

o TIE Language – A Verilog-based language that allows users to define processor extensions

o TIE Compiler and automated methodology to convert TIE description in to

– Software tools (C/C++ compiler, debugger, instruction set simulator)

– Hardware (RTL)

• For more information beyond this session, refer to..

o TIE Language Reference Manual

o TIE Language User’s Guide

o Online Training Module (TIE)

What is TIE?

© 2021 Cadence Design Systems, Inc. All rights reserved.5

• Extensions tailored to application
requirements and PPA targets

• Programmability

o State machine becomes S/W

o Datapath (i.e., compute) similar to RTL

• Verification

o User only verifies datapath

o Use S/W for verification

• Immediate feedback – compile and
use extensions in a matter of
minutes

Advantage of TIE

0

2000

4000

6000

8000

10000

12000

0

2

4

6

8

10

12

14

A
d

d
it

io
n

al
 G

at
es

Sp
ee

d
u

p

Example TIE performance and additional area

Gates Speedup

© 2021 Cadence Design Systems, Inc. All rights reserved.6

Types of Extensions

Fusion, Vector (SIMD), VLIW Machines

• Custom execution units integrated in to
the processor pipeline
o Single-cycle or pipelined multi-cycle

o Fusion or SIMD-type computation

• Support for SIMD and Wide data by
creating register banks up to 4096 bits
wide
o Single-instance or multi-entry

• Custom load and store operations
o Move up to 512 bits per access

o Custom addressing modes

• VLIW-like operations for exploiting
instruction level parallelism

Data
RAM/cache

Base
register file

Base ALU

Processor
controls

Instruction
RAM/cache

Load Store
Interface

≤4096b

TIE
register files

TIE state
registers

Move

Ops

Pipelined

Execution

Units

Pipelined

Execution

Units

Pipelined

Execution

Units

Boolean Regs

Mul32, FPU

© 2021 Cadence Design Systems, Inc. All rights reserved.7

Types of Extensions

SOC Connectivity

• Low latency, high bandwidth data transfers
o Move data directly to/from custom execution units

o Bypass load/store unit (AXI)

• Choice of interfaces
o Queues for FIFO-type handshaking

o Lookups for atomic request-response transactions

o General purpose I/O for read/write

• Up to 1024 interfaces per core
o Each up to 1024 bits wide

Data
RAM/cache

Base
register file

Base ALU

Processor
controls

Instruction
RAM/cache

Load Store
Interface

≤4096b

TIE
register files

TIE state
registers

Move

Ops

Pipelined

Execution

Units

Pipelined

Execution

Units

Pipelined

Execution

Units

Boolean Regs

Mul32, FPU

Output Queues,
Ports & Lookups

Input Queues,
Ports & Lookups

≤1024b
≤1024b

© 2021 Cadence Design Systems, Inc. All rights reserved.8

Types of Extensions
Hardware Coprocessors using extended TIE (eTIE)

• Accelerators that execute autonomously of
the processor pipeline
o Variable and state-dependent execution

o Decision logic implemented in hardware

o Signal error or exception conditions via interrupt

• Data from a variety of sources
o Direct from processor via TIE interfaces

o Direct from private memory or internal flops

o Generated during execution (e.g., FFT twiddle tables)

• Close connection between hardware
description and software tools
o eTIE hardware description modeled in ISS

o Compiler visibility of eTIE resource scheduling

o Debugger awareness of eTIE hardware resources

RTL

.

Xtensa CPU / DSP

Scatter
Gather

Xtensa
Core

Slave
Port iDMA

eTIE

User TIE
Custom ops

Custom
hardware

Private
Memory

Master
Port

Configuration option

Extensibility option

New Extensibility
option

TIEWARE

eTie
Modules

Hardware
IP Blocks

Tie
Modules

System
Memory

RTL, Mem,
CPU, ...

RTL

RTL,
Look-up Tables

TIE
Queues

TIE Ports, or
TIE Queues, or
TIE Look-ups, or

TIE External Registers

TIE
Ports

TIE
Look-ups

TIE
External Registers

Customer Design

Library of HW IPs

eTIE deep-dive session: https://wiki.ith.intel.com/display/RDSE/Tensilica

https://wiki.ith.intel.com/display/RDSE/Tensilica

© 2021 Cadence Design Systems, Inc. All rights reserved.9

TIE Development Walkthrough

© 2021 Cadence Design Systems, Inc. All rights reserved.10

• “Local” TDK Flow

o TC adds the new instruction to Xtensa core

– Use Xtensa Xplorer or command-line

– Typically takes a few minutes

o Produces a new set of Xtensa software tools

o Instructions can be used right away in
application

o Also produced → RTL of TIE extensions

• XPG Flow

o Produces RTL of processor w/ TIE
extensions

o Processor build is done by automated
Tensilica server (takes several hours)

o Submission is done from within Xtensa
Xplorer IDE

Typical TIE Development Flow

Xtensa Core

ID application-specific instructions and

develop TIE description

Attach TIE to Xtensa core and compile

TIE

Incorporate TIE intrinsic functions in

C/C++ application and recompile

Profile application with help of cycle-

accurate ISS and identify Hot Spots

re
p

e
a

t
u

n
ti
l
a

c
c
e

p
ta

b
le

Submit TIE and processor configuration

to Tensilica for Processor RTL

Generation

C/C++ Application

© 2021 Cadence Design Systems, Inc. All rights reserved.11

Fusing operations to improve performance

unsigned int a[N], b[N], c[N], i ;

for (i = 0; i < N; i++) {

c[i] = (a[i] + b[i]) / 2 ;

}

C Code

addshift a9,a11,a10

Xtensa ISA

+, >>+

>>

cycle 1

cycle 2

Xtensa ISA + Custom Instruction(s)

add.n a9, a11, a10

srli a9, a9, 1

© 2021 Cadence Design Systems, Inc. All rights reserved.12

• User specifies three elements of a TIE operation
o Unique name

o List of operands – input(s) and output(s)

o Computation performed on input(s) to produce output(s)

• TIE Compiler handles everything else!
o New opcode addshift is added to ISA

o Operation RTL is generated from TIE description

o Operation RTL is integrated in to processor pipeline

– Input and output operands wired up to respective architectural resources (e.g., register files)

– Interlock (i.e., stall) and forwarding/bypass logic wired up

o Software tools (e.g., compiler, simulator, etc.) updated to handle addshift opcode

The basics of a new TIE operation, addshift

operation addshift {out AR avg, in AR A, in AR B} {} {

assign avg = (A + B) >> 1 ;

}

avg.tie

© 2021 Cadence Design Systems, Inc. All rights reserved.13

• Explicit
o Require encoding bits within instruction word (e.g., register file accesses or immediates)

o Readable (or writable) via Assembly or C code

o Number of operands is only limited only by available encoding space

• Implicit
o Singleton resources that don’t require encoding bits (e.g., memory or TIE interfaces)

o Not readable (or writable) directly via Assembly or C code

o Number of operands is theoretically unlimited

• Operands can be inputs (i.e., read), outputs (i.e., write), or inout (read and write)

Operands of TIE operation

operation addshift {/* explicit */out AR avg, in AR A, in AR B} {/* implicit */} {

assign avg = (A + B) >> 1 ;

}

avg.tie

© 2021 Cadence Design Systems, Inc. All rights reserved.14

• Behavioral description of computation datapath

• Syntax is similar to Verilog
o Computation is described use one or more continuous assignments

o Temporary variables are represented using TIE wire

o Sequential logic is represented using TIEflop

o Result of expression in assignment statement is either an output operand or temporary wire

o Rich set of operators to form expressions

• Computation can be single-cycle (default) or multi-cycle

• Multi-cycle computation is fully-pipelined
o Allows back-to-back instructions for maximum throughput

Computation in TIE operation

operation addshift {/* explicit */out AR avg, in AR A, in AR B} {/* implicit */} {

assign avg = (A + B) >> 1 ;

}

avg.tie

© 2021 Cadence Design Systems, Inc. All rights reserved.15

• Compilation is “local” - i.e., with local installation of TIE Compiler
o CL (command-line) or invoke within Xtensa Xplorer

o “Attach” TIE sources to Xtensa core and compile!

o Process is quick – a few minutes

• Compilation produces a new set of Xtensa software tools

• Can use instruction extensions in software right away

Compiling TIE

Xtensa

Core

TIE

sources

TIE Compiler

Xtensa C/C++ Compiler

GNU Assembler,

Debugger, and Profiler

Cycle-accurate ISS and

XTSC system-modeling

environment
Simulation Models

Software Toolchain

TIE H/W

and EDA Scripts
RTL source code for

extensions, EDA scripts
Iterate in Minutes

© 2021 Cadence Design Systems, Inc. All rights reserved.16

• TIE-specific extensions to ANSI C/C++ standard
o TIE Intrinsics → similar to C intrinsics

o TIE ctype→ user-defined data types

• Write in C or C++. No Assembly programming needed.

Usage in Software

unsigned int a[N], b[N], c[N], i;

for (i=0; i<N; i++) {

c[i] = (a[i] + b[i]) / 2;

}

…

l32i.n a11, a11, 0

l32i.n a9, a9, 0

add.n a9, a9, a11

srli a9, a9, 1

s32i.n a9, a10, 0

…

…

l32i.n a9, a9, 0

l32i.n a11, a11, 0

addshift a9, a9, a11

s32i.n a9, a10, 0

…

…

unsigned int a[N], b[N], c[N], i;

for (i=0; i<N; i++) {

c[i] = addshift(a[i], b[i]);

}

Regular C/C++ code C/C++ code incorporating Instruction Extensions

addshift opcode

C intrinsic of

addshift instruction

Xtensa

C/C++ Compiler

© 2021 Cadence Design Systems, Inc. All rights reserved.17

• Similar to C intrinsic used for compiler-inferred architecture-specific
optimizations on C/C++ code

• Xtensa C/C++ compiler responsible for

o Type checking of input/output arguments

o Data movement, if necessary

o Translation into TIE operation(s)

• Implementation is inlined in generated Assembly

TIE Intrinsic

unsigned int a[N], b[N], c[N], i;

for (i=0; i<N; i++) {

c[i] = addshift(a[i], b[i]);

}

…

l32i.n a9, a9, 0

l32i.n a11, a11, 0

addshift a9, a9, a11

s32i.n a9, a10, 0

…

…

© 2021 Cadence Design Systems, Inc. All rights reserved.18

• Xtensa Instruction Set Simulator (ISS) automatically updated by TC

o Simulation model derived from original TIE description

o Cycle-accurate and functional modes

• Standalone ISS sufficient for extensions “local” to the processor

• Options for extensions that use TIE interfaces to external h/w

o Standalone ISS with data files

o XTSC (SystemC) modeling environment where external devices can be modeled

– ISS is embedded within XTSC

o Co-simulation (RTL plus XTSC)

• Native (i.e., x86) compilation and simulation using cstubs library

o ANSI C/C++ routines that are functionally equivalent to TIE instructions

Options for Simulating C/C++ code with TIE

© 2021 Cadence Design Systems, Inc. All rights reserved.19

• TIE compiler ensures that the RTL and ISS match
TIE description

• However… TIE developer will

o Verify that TIE description does what you want it to do

o Verify that the processor (including TIE) behaves
properly after synthesis

• Verification strategy

o Start with unit-level verification using ISS (or XTSC)

– Verify each TIE operation

– Use C reference or test vectors

o Run subset of tests on RTL simulator for sanity

o Formal as-needed

TIE Verification

Set Initial

Conditions

Call TIE

Intrinsic

Output

=

Reference

?

Define

Reference

Output

Fail

Pass

Yes

No

TIE TEST CODE: Flowchart

© 2021 Cadence Design Systems, Inc. All rights reserved.20

The eTIE Language Extention

© 2021 Cadence Design Systems, Inc. All rights reserved.21

Innovating with TIE Today

• Design Problem: Implement a state machine-like
function and couple it to a processor

– E.g., CRC checker-generator

– Execution as pure C code on general purpose CPU is likely to be
inefficient

– Consumes excessive processor resources

• Option 1: TIE
– Capture computationally intensive tasks in TIE

– Specialized XOR’s, shifts

– Control loop in software

✓ Significant speedup over pure software approach

✓ Control code flexibility

̶ Performance less than that of pure RTL approach

- Branching penalties and pointer fetch from memory can be bottlenecks

Xtensa

TIE

AXI

© 2021 Cadence Design Systems, Inc. All rights reserved.22

Innovating with TIE Today (cont.)

• Option 2: Hardware accelerator with TIE interfaces

– CRC hardware accelerator designed in RTL

– Data path supplied via TIE interfaces (queue or lookup)

✓ Can achieve RTL-level performance

✓ Relieves bottlenecks on system bus

- Less software flexibility than Option 1

- Time consuming to explore hardware vs. software tradeoffs

- Iterative approach

Xtensa

TIE i/f

AXI

CRC gen

© 2021 Cadence Design Systems, Inc. All rights reserved.23

Introducing eTIE

• What it if was possible to design the external hardware accelerator using the TIE language?

– One source for processor extensions, TIE interfaces, and external accelerator

– Instruction set simulator can model functionality and performance of accelerator

– Enables architects and designers to quickly explore performance vs. power vs. flexibility tradeoffs

– Compiler can be aware of accelerator latency and optimize code schedules

– Generated RTL would match software model

Xtensa

TIE

AXI

CRC gen

(eTIE)

Interface

Everything in box is auto-generated

© 2021 Cadence Design Systems, Inc. All rights reserved.24

eTIE – New Extensibility option with Xtensa

• Enables generation of tightly-coupled
hardware coprocessors
o Specialized functions

o Massive operational throughput

o Intelligent IOs of increased dimension

• Auto-generation of development
environment and tools
o Cycle accurate C-model of coprocessors

o Integrated coprocessor programming model

o All with compiler, software and debug
development tool chain support

• Library of pre-verified hardware IP
components (TIEWare)

RTL

.

Xtensa CPU / DSP

Scatter
Gather

Xtensa
Core

Slave
Port iDMA

eTIE

User TIE
Custom ops

Custom
hardware

Private
Memory

Master
Port

Configuration option

Extensibility option

New Extensibility
option

TIEWARE

eTie
Modules

Hardware
IP Blocks

Tie
Modules

System
Memory

RTL, Mem,
CPU, ...

RTL

RTL,
Look-up Tables

TIE
Queues

TIE Ports, or
TIE Queues, or
TIE Look-ups, or

TIE External Registers

TIE
Ports

TIE
Look-ups

TIE
External Registers

Customer Design

Library of HW IPs

© 2021 Cadence Design Systems, Inc. All rights reserved.25

Running on Xtensa processor

eTIE Anatomy package "" "Hardware TIE" "“

module divide_quo_rem_32_s1(

…

) {

…

}

module divide_quo_rem_32_s2(

…

) {

…

}

module fifo (

…

) {

…

}

property top_module {ha_div32}

module ha_div32(

queue INDATA,

queue OUTDATA,

lookup DEVICE_REG

) {

wire csr0_en = DEVICE_REG.In[3:0] == 4’b0;

wire [27:0] csr0_data = DEVICE_REG.In[31:4];

assign DEVICE_REG.out = csr0_en ? csr0 : 32’b0;

wire in_fifo_write = OUTDATA.Req;

wire [31:0] in_fifo_data = OUTDATA.Data;

assign OUTDATA.Full = in_fifo_full;

…

}

endpackage ""

queue INDATA 32 in

queue OUTDATA 32 out

operation QPUSH{in AR arr} {out OUTDATA}

{

assign OUTDATA = arr;

}

operation QPOP{out AR art} {in INDATA}

{

assign art = INDATA;

}

lookup DEVICE_REG {37, Wstage} {32 Wstage+1}

operation MEM_WR{ in AR ars, in AR arr } { out DEVICE_REG_Out, in

DEVICE_REG_In}

{

assign DEVICE_REG_Out = {ars, arr[3:0], 1'b1};

}

operation MEM_RD{ out AR art, in AR arr } { out DEVICE_REG_Out, in

DEVICE_REG_In}

{

assign DEVICE_REG_Out = {32b0, arr[3:0], 1'b0};

assign art = DEVICE_REG_In;

}

Hardware accelerator
eTIE logic

implemented by user

(shown as “…” here)

Binding

processor

with HW

accelerator

Top-level module

Instructions

on

processor

© 2021 Cadence Design Systems, Inc. All rights reserved.26

• Built-in interfaces

o Interrupt

o External register (RER/WER)

• Instruction controlled interfaces

o TIE queue

o TIE Lookup

o External register file port

• Control interfaces

o Idle

Primary TIE to eTIE interfaces

eTIE

TIE

Lookup

Queue

External RF

Base CPU Core

Interrupt Idle

Xtensa

Private
SRAM

Data
RAM

Xttop

Xtmem

ExtReg

© 2021 Cadence Design Systems, Inc. All rights reserved.27

eTIE Benefits

• Builds upon Tensilica’s proven and best-in-class extension capability

• Automatically generates software model of Xtensa + eTIE
– Enables up front analysis of hardware and software tradeoffs

– Simulation environment is automatically generated

– Easily debug functionality using TIE constructs

• Extends processor functionality in novel ways
– Add independent computation engines

– Hardware can be directly coupled to, and controlled by, processor

– No need to design and connect interface between processor and hardware

© 2021 Cadence Design Systems, Inc. All rights reserved.28

eTIE Example

© 2021 Cadence Design Systems, Inc. All rights reserved.29

• eTIE implements an instruction “foo” that takes N cycles to complete
o N can be variable

o Computation can be pipelined (i.e., M outstanding “foo”)

o E.g., cordic, divide, etc.

• TIE instructions used for interacting with eTIE through TIE interfaces
o Request → Send data to eTIE and start “function” compute

o Response Get result back N cycles later

• Compiler is aware of the latency (N) of computation
o Schedules independent instructions between request and response

• Compiler can also schedule and interleave multiple (M) requests

Use Model #1 – eTIE “Instruction”

© 2021 Cadence Design Systems, Inc. All rights reserved.30

• eTIE implements an accelerator that processes a large data set
o Can take 100s of cycles to process dataset

o Data set, processed results, and any temporary data is stored in eTIE’s private memory

o E.g., AES, FFT, matrix engine

• eTIE accelerator execution is decoupled from software on Xtensa
o eTIE signals completion (or error events) to Xtensa via interrupts

• TIE instructions used for:
o Sending/receiving data to/from eTIE’s private memory

o Cmd/status query

Use Model #2 – eTIE “standalone accelerator”

© 2021 Cadence Design Systems, Inc. All rights reserved.31

• Build base configuration and optionally configure eTIE interrupts

• Write TIE and eTIE (can be one file or multiple files)

• Iterate in the well-known TDK flow
o Run TIE Compiler

– Automatically insert TIEprint on all eTIE internal wires and module arguments with optional –waveform flag

o Write software and simulate core (TIE) and accelerator (eTIE) in Instruction Set Simulator

– Core simulation can be sped-up with TurboXim, but eTIE is always cycle-accurate

o Debug

– Convert eTIE’s TIEprint log to vcd and view in waveform viewer (e.g., SimVision) post-simulation

• Cadence provides etieprint2vcd utility

– View eTIE’s internal wires using info tie command in a debug (i.e., xt-gdb) session

– Use external register interface to peek/poke private memory and internal state (assuming eTIE logic support)

• Via RER/WER instructions in C code

• Via mmio-rd/mmio-wr in xt-gdb

o Synthesize eTIE in TDK synthesis flow for early area/timing

• Submit to XPG

eTIE Development Flow

© 2021 Cadence Design Systems, Inc. All rights reserved.32

Writing eTIE and TIE

© 2021 Cadence Design Systems, Inc. All rights reserved.33

• Implement Givens rotation-based COordinate Rotation DIgital Computer
o Algorithm to compute Sine and Cosine

o Hardware efficient → uses shift-add (no multipliers)

o Iterative → increasing accuracy with increasing iteration count

Fixed-Point CORDIC

0

y = sin(q)

x = cos(q)

q
i0

i1

i2

i3

x[i + 1] = x[i] – σi 2
-i y[i]

y[i + 1] = y[i] – σi 2
-i x[i]

z[i + 1] = z[i] – σi tan-1 2-i

where,

i = 0, 1, … N-1, and N is total number of iterations

σi = -1 if z[i] < 0, 1 otherwise

© 2021 Cadence Design Systems, Inc. All rights reserved.34

eTIE

• eTIE

o TWO Cordic compute engines

– Sine (or cosine) result produced every 32 cycles/engine

– One Cordic iteration/cycle

o 2-entry register file – accessible from Xtensa via External Register File Interface

– One entry per Cordic compute engine

– Regfile write copies input operand from Xtensa and starts computation

– Cordic engine updates corresponding regfile entry when result available

– Regfile read from Xtensa reads result of computation

• Ability to stall Xtensa pipeline if result is not available

o 2-bit lookup interface to distinguish between normal writes and sine/cosine
writes to register file

• Extensions to Xtensa Pipeline

o TIE Interfaces

– Lookup for computation mode control (i.e., sine/cosine/etc.)

– External register file to copy operands to h/w engine and read results back

o TIE operations to work with the TIE interfaces

Block Diagram of Cordic Implementation in eTIE

Xtensa

Core

Cordic

Engine

(x2)

Cordic

Engine

(x2)

Control

&

Stall

Regfile
(2-entry)

rd/wr

rd/wr trigger

External

Register file
ReadStall

mode
Lookup I/F

© 2021 Cadence Design Systems, Inc. All rights reserved.35

• TIE source can contain eTIE and regular TIE

• eTIE is enclosed in ETIE package

• eTIE has a single top level TIE module

o property etie_top_module {<module name>}

o Argument list contains all TIE I/Fs used between
Xtensa and eTIE in the design

• eTIE can contain multiple TIE modules

o A TIE module may instantiate another TIE module

o Similar to Verilog Module; used to create hierarchy
under eTIE top module

TIE+eTIE Design Walkthrough //--

// Regular TIE - Implemented in Xtensa

//--

//--

// eTie

//--

// Use "package to indicate eTIE

package “etie" "ETIE" ""

// Use "property" to indicate top module of eTIE

property etie_top_module {etie_top}

module etie_top (

regfile EREG,

lookup MODE

) {

// ...

cordic #(2) cordic (res, busy, done, start,

angle_in, cordic_mode);

}

module cordic (

// ...

) {

// ...

}

endpackage “etie“

© 2021 Cadence Design Systems, Inc. All rights reserved.36

• Described with TIE module

o Multiple inputs and outputs

o Multi-cycle

• Computes sine/cosine for a given input
angle

o Input is 32-bit fixed point value in angle_in

o mode_in determines if sine or cosine is
computed

• Result is produced in res_out 32 cycles
later

o Indicated by done_out

• While computation is in progress,
busy_out stays asserted

Cordic eTIE Module

module cordic(

out [31:0] res_out, // 32 bit result

out busy_out, // Indicate cordic module is busy

out done_out, // Indicate cordic computation is done

in start_in, // Pulse signal to trigger start

in [31:0] angle_in, // Input angle

in mode_in // Input mode. 0 - sin 1- cos

)

{

// Implementation (discussed on next slide)

}

© 2021 Cadence Design Systems, Inc. All rights reserved.37

• Multi-cycle control and dataflow
expressed in TIE Language

• wire datatype

o Can also be a reg implicitly in sequential logic

• Continuous assignment

o No concept of blocking/non-blocking Verilog
assignments

o Most Verilog operators supported

• Sequential logic implemented using
TIEflop or TIEenFlop built-in modules

• If-else and case statements implemented
using TIEsel and/or TIEmux built-in
modules

• TIE perl preprocessor (tpp) can be used

Cordic eTIE Module (contd.)

module cordic(

…

)

{

…`

wire [31:0] angle_next;

wire [31:0] angle;

wire [4:0] count_next;

wire [4:0] count;

assign count_next = start_in ? 5'b0 : busy ? count + 5'b1 : count;

assign count = TIEenFlop(count_next, start_in || busy);

// beta lookup table

; for(my $i=0; $i<32; $i++) {

wire [31:0] beta_lut`$i` = `$BETA[$i]`;

; }

wire [31:0] beta = TIEmux(count,

; for(my $i=0; $i<32; $i++) {

beta_lut`$i` `$i==31?');':','`

; }

assign angle_next = start_in ? angle_in : busy ?

(direction_negative ? (angle + beta) : (angle - beta)) : angle ;

assign angle = TIEenFlop(angle_next, start_in || busy) ;

…

}

© 2021 Cadence Design Systems, Inc. All rights reserved.38

• Within eTIE

o Used alongside compute blocks for data in/out and flow control

o Use model

1. Request initiated by non-blocking regfile write

2. Response through blocking regfile read to same entry

– Two internal phases - check and (subsequent) read

– eTIE can stall processor pipeline in check phase if response not
available

o Regfile depth controls maximum #outstanding

o Actual storage is implemented in eTIE

• From perspective of TIE Instruction, external regfile looks like
any other register file; fixed use/def schedule however

• Compiler manages multiple outstanding requests as separate
external regfile entries

• A typical latency is specified in TIE between request (write)
and response (read), allowing compiler to schedule other
instructions in between

o Response (read) latency can be extended by eTIE via hardware
protocol and processor will stall

Usage of External Register File

Xtensa

Core

eTIE

Write

WriteAddress

WriteData

ReadCheck

ReadCheckAddress

ReadStall

Read

ReadAddress

ReadData Regfile

Compute

Blocks

rd/wr

rd/wr

© 2021 Cadence Design Systems, Inc. All rights reserved.39

Implementation in eTIE

module etie_top

(

...

regfile EREG

)

{

//--

// External Regfile’s register entry 0 (entry 1 not shown for simplicity)

//--

// Define external register 0 of regile

wire [31: 0] ereg0;

wire [31: 0] ereg0_next;

// Decode to register write signals

wire ereg0_wr = EREG.Write && (EREG.WriteAddr == 1'd0);

wire start0 = ereg0_wr && (op_sin_delay || op_cos_delay);

wire cordic0_wr = done[0];

// Write register

assign ereg0_next = cordic0_wr ? res[31:0] : ereg0_wr ? EREG.WriteData: ereg0;

assign ereg0 = TIEenFlop(ereg0_next, ereg0_wr|cordic0_wr);

// Read register

assign EREG.ReadData = TIEmux(EREG.ReadAddr, ereg0, ereg1) ;

// Read Stall Logic

wire stall_mux;

assign stall_mux = TIEmux(EREG.ReadCheckAddr,(busy[0]||start0),(busy[1]||

start1)) ;

assign EREG.ReadStall = EREG.ReadCheck ? stall_mux : 1’d0;

...

}

• Top eTIE Module declares external

register file in argument list

• Each individual port can be accessed in

eTIE Module

• Regfile write updates register file

• Optionally starts computation

• Note that some writes are related to

compiler-mandated ld/st/mv.

• Regfile read is split in to Check and Read

• In check phase, eTIE can use
ReadStall to stall Xtensa pipeline

• In read phase, eTIE returns data

• Regfile is implemented in eTIE using
built-in TIEenFlop module to

© 2021 Cadence Design Systems, Inc. All rights reserved.40

TIE Instructions

lookup MODE {2, Wstage-1} {2, Wstage}

regfile EREG {

width : 32,

depth : 2,

short_name : er,

external : 1,

direct_bypass : 0

}

operation SIN_EREG {out EREG ereg, in AR ars} {out MODE_Out, in MODE_In} {

assign MODE_Out = {2'd1};

assign ereg = ars;

}

schedule sch_etie_def {WR_EREG, SIN_EREG} {

use ars Wstage;

def ereg Wstage;

}

ctype ereg 32 32 EREG default

operation WR_EREG {out EREG ereg, in AR ars} {out MODE_Out, in MODE_In} {

assign MODE_Out = {2'd3};

assign ereg = ars;

}

proto ereg_loadi {out ereg a, in ereg* b, in immediate c}{uint32 tmp}{

L32I tmp, b, c;

WR_EREG a, tmp;

}

proto SIN_EREG_DELAY {out ereg a, in int32 b, in immediate delay} {} {

SIN_EREG a, b;

}

property variable_def SIN_EREG_DELAY a delay

• TIE interfaces that communicate with eTIE

• Lookup
• Regfile is declared external

• TIE operations to work with these TIE

interfaces
• External regfile use/def is fixed

• Can also be FLIXed

• Can declare ctype for external regfile

• Need to provide compiler-mandated

load/store/move protos

• Load/store to external regfile is always

through Xtensa internal regfile

• Compiler can be provided a typical latency

between request (write) and response
(read) through property variable_def

and use in proto

• Useful hint for scheduling

• Latency can be changed in C code as

needed

© 2021 Cadence Design Systems, Inc. All rights reserved.41

TDK Flow – Compile eTIE+TIE, Simulate, Debug

© 2021 Cadence Design Systems, Inc. All rights reserved.42

• Run TIE Compiler in Xtensa Xplorer UI or command-line

• Automatically insert TIEprint on all eTIE internal wires and arguments with –waveform flag

Compiling TIE+eTIE

tc –d <tdk_dir> –waveform cordic.tie

© 2021 Cadence Design Systems, Inc. All rights reserved.43

• Request (SIN_EREG_DELAY) and response (RD_EREG) are related by ctype variable (e.g., ereg sin0)

• Typical latency compiler hint for a cordic computation is an argument to the request (SIN_EREG_DELAY)

• Compiler uses latency to minimize pipeline bubble between request and response during scheduling

• Compiler will schedule outstanding requests up to the #entries in external register file

Software for Cordic eTIE

20001073: { loopgtz a8, 200010eb ; movi a2, 0; movi a3, 90; mov.n a9, a14 }

20001083: l32i.n a12, a10, 0

20001085: sin_ereg er0, a12

20001088: { l32i.n a13, a10, 8; l32i.n a15, a10, 4 }

20001090: rd_ereg a8, er0

20001093: sin_ereg er0, a15

20001096: sin_ereg er1, a13

20001099: { s32i.n a8, a1, 8; l32i.n a11, a10, 12 }

200010a1: rd_ereg a12, er1

200010a4: sin_ereg er1, a11

200010a7: { s32i.n a12, a1, 0; l32i.n a15, a1, 8 }

200010af: rd_ereg a8, er1

200010b2: wr_ereg er1, a15

200010b5: { s32i.n a8, a1, 4; l32i.n a13, a1, 0 }

200010bd: rd_ereg a11, er1

© 2021 Cadence Design Systems, Inc. All rights reserved.44

• Simulate core (TIE) and accelerator (eTIE) in ISS
o XTSC is not required

o eTIE simulation is always cycle-accurate

o Core (TIE) simulation can be cycle-accurate or functional (i.e., TurboXim)

• eTIE TIEprint can be written to logfile

• Convert to vcd for inspection in waveform viewer (e.g., SimVision)
o Can choose to ALL or selected eTIE modules

Simulating TIE+eTIE

xt-run cordic –-etieprint=etie.log –Xtensa-params=<tdk_dir>

tieprint2vcd –i=etie.log [-m=m0,m1,m2,…]

© 2021 Cadence Design Systems, Inc. All rights reserved.45

Viewing vcd in Waveform Viewer

© 2021 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence

Design Systems, Inc. Accellera and SystemC are trademarks of Accellera Systems Initiative Inc. All Arm products are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All MIPI

specifications are registered trademarks or service marks owned by MIPI Alliance. All PCI-SIG specifications are registered trademarks or trademarks of PCI-SIG. All other trademarks are the property of their respective owners.

https://www.cadence.com/go/trademarks

